Skip to main content
Log in

Some results obtained at the relativistic heavy ion collider

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Some results obtained in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory are discussed. Along with observables studied at energies lower than those at RHIC (particle production ratios, soft spectra, flows, and so on), observables specific for RHIC energies related to the Jet Quenching effect and Color Glass Condensate (CGC) manifestation are discussed. Preliminary results and specifics of particular experiments at RHIC are not considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Chapline, M. H. Johnson, E. Teller, and M. S. Weiss, Phys. Rev. D 8, 4302 (1973).

    Article  ADS  Google Scholar 

  2. T. D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 (1974).

    Article  ADS  Google Scholar 

  3. T. D. Lee and G. C. Wick, Rev. Mod. Phys. 47, 267 (1975).

    Article  ADS  Google Scholar 

  4. J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).

    Article  ADS  Google Scholar 

  5. G. Baym and S. A. Chin, Phys. Lett. B 62, 241 (1976).

    Article  ADS  Google Scholar 

  6. G. Chapline and M. Nauenberg, Phys. Rev. D 10, 450 (1977).

    Article  ADS  Google Scholar 

  7. E. V. Shuryak, Phys. Rep. 61, 71 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  8. K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

    Article  ADS  Google Scholar 

  9. M. Creutz, Phys. Rev. D 15, 1128 (1974).

    Article  ADS  Google Scholar 

  10. H. Satz, Nucl. Phys. A 715, 3 (2003).

    Article  ADS  Google Scholar 

  11. Ed. by M. Harrison, T. Ludlam, and S. Ozaki, Nucl. Instrum. Methods A 499, 235–880 (2003).

  12. http://www.bnl.gov/rhic/.

  13. http://www4.rcf.bnl.gov/brahms/WWW/.

  14. http://www.phenix.bnl.gov/.

  15. http://www.phobos.bnl.gov/.

  16. http://www.star.bnl.gov/.

  17. I. Arsene et al., Nucl. Phys. A 757, 1–27 (2005).

    Article  ADS  Google Scholar 

  18. PHOBOS Collaboration, B. B. Back, et al., Nucl. Phys. A 757, 28–101 (2005).

    Article  ADS  Google Scholar 

  19. STAR Collaboration, J. Adams, et al., Nucl. Phys. A 757, 102–183 (2005).

    Article  ADS  Google Scholar 

  20. PHENIX Collaboration, K. Adcox, et al., Nucl. Phys. A 757, 184–283 (2005).

    Article  ADS  Google Scholar 

  21. F. Karsch, arXiv:hep-lat/106019v2 (2001).

  22. Z. Fodor and S.D. Katz, arXiv:hep-lat/0402006 (2003).

  23. E. Shuryak, arXiv:hep-ph/0405066 (2006).

  24. M. Gyulassy, arXiv:hep-ph/0403032 (2004).

  25. E917 Collaboration, B. B. Back, et al., Phys. Rev. lett. 86, 1970 (2001).

    Article  ADS  Google Scholar 

  26. E802 Collaboration, L. Ahle, et al., Phys. Rev. C 60, 064901 (1999).

  27. E877 Collaboration, J. Barette, et al., Phys. Rev. C 62, 024901 (2000).

  28. NA49 Collaboration, H. Appelshauser, et al., Phys. Rev. Lett. 82, 2471 (1999).

    Article  ADS  Google Scholar 

  29. BRAHMS Collaboration, Nucl. Phys. A 715, 171c (2003).

    Article  ADS  Google Scholar 

  30. BRAHMS Collaboration, I. G. Bearden, et al., Phys. Rev. Lett. 93, 1020301 (2004).

    Google Scholar 

  31. B. B. Back et al., Phys. Rev. Lett. 88, 022302 (2002).

  32. F. Videbaek and O. Hansen, Phys. Rev. C 52, 26 (1995).

    Article  Google Scholar 

  33. W. Busza and A. S. Goldhaber, Phys. Rev. B 139, 235 (1984).

    Google Scholar 

  34. J. D. Bjorken, Phys. Rev. D 27, 140–151 (1983).

    Article  ADS  Google Scholar 

  35. S. Margetis et al., Phys. Rev. Lett. 75, 3814–3817 (1995).

    Article  ADS  Google Scholar 

  36. S. S. Adler et al., Phys. Rev. C 71, 034908 (2005).

  37. B. B. Back et al., Phys. Rev. Lett. 91, 052303 (2003).

  38. S. Y. Li and X.-N. Wang, Phys. Lett. B 527, 85–91 (2002).

    Article  ADS  Google Scholar 

  39. A. Bazilevsky et al., Nucl. Phys. A 715, 486 (2003).

    Article  ADS  Google Scholar 

  40. V. Topor Pop et al., Phys. Rev. C 68, 054902 (2003).

  41. D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121–128 (2001).

    Article  ADS  Google Scholar 

  42. D. Kharzeev and E. Levin, Phys. Lett. B 523, 79–87 (2001).

    Article  ADS  Google Scholar 

  43. K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and K. Tuominen, Nucl. Phys. B 750, 379–389 (2000).

    Article  ADS  Google Scholar 

  44. K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and K. Tuominen, Nucl. Phys. A 696, 715–728 (2001).

    Article  ADS  Google Scholar 

  45. B. B. Back et al., Phys. Rev. Lett. 85, 3100–3104 (2000).

    Article  ADS  Google Scholar 

  46. K. Adcox et al., Phys. Rev. Lett. 86, 3500–3505 (2001).

    Article  ADS  Google Scholar 

  47. K. Adcox et al., Phys. Rev. Lett. 87, 052301 (2001).

  48. F. Becattini, Z. Phys. C 69, 485–492 (1996).

    Article  Google Scholar 

  49. F. Becattini and U. W. Heinz, Z. Phys. C 76, 269–283 (1996).

    Article  Google Scholar 

  50. J. Sollfrank, U. Heinz, and N. Xu, Phys. Rev. C 59, 1637 (1999).

    Article  ADS  Google Scholar 

  51. J. Rafelski, Phys. Lett. B 262, 333 (1991).

    Article  ADS  Google Scholar 

  52. P. Braun-Munzinger et al., Phys. Rev. B 344, 43 (1995).

    Google Scholar 

  53. P. Braun-Munzinger et al., Phys. Rev. B 365, 1 (1996).

    Article  Google Scholar 

  54. J. Cleymans et al., Z. Phys. C 319, 1 (1997).

    Google Scholar 

  55. A. Panagiotou et al., Phys. Rev. C 53, 1353 (1996).

    Article  ADS  Google Scholar 

  56. J. Letessier and J. Rafelski. J. Phys. C 25, 295 (1999).

    Google Scholar 

  57. J. Cleymans, H. Oeschler, and K. Redlich. Phys. Rev. C 59, 1663 (1999).

    Article  ADS  Google Scholar 

  58. M. Kaneta and N. Xu. J. Phys. C 27, 589 (2001).

    Google Scholar 

  59. N. Xu and M. Kaneta. Nucl. Phys. 306, 182301 (2002).

  60. S. S. Adler et al., Phys. Rev. Lett. 91, 182301 (2003).

  61. N. Xu and M. Kaneta, arXiv:hep-th/0405068v1 (2004).

  62. P. Braun-Munzinger, K. Redlich, and J. Stachel, arXivr:hep-th/0304013v1 (2003).

  63. J. Cleymans, B. Kampfer, M. Kaneta, et al., arXiv:hep-th/0409071 (2004).

  64. F. Becattini, M. Gazdzicki, A. Keranen, et al., Phys. Rev. C 69, 024905 (2004).

  65. C. Adler et al., Phys. Rev. C 66, 061901(R) (2002).

  66. STAR Collaboration, J. Adams, et al., Phys. Lett. B 612, 181–189 (2005).

    Article  ADS  Google Scholar 

  67. J. Adams et al., Phys. Rev. C 71, 064902 (2005).

  68. H. Albrecht et al., Z. Phys. C 61, 1 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  69. M. Derrick et al., Phys. Lett. B 158, 519 (1985).

    Article  ADS  Google Scholar 

  70. K. Abe et al., Phys. Rev. D 59, 052001 (1999).

  71. Y. Pei, Z. Phys. C 72, 39 (1996).

    Article  Google Scholar 

  72. J. Canter et al., Phys. Rev. D 20, 1029 (1979).

    Article  ADS  Google Scholar 

  73. M. Aguilar-Benitez et al., Z. Phys. C 50, 405 (1991).

    Article  Google Scholar 

  74. D. Drijard et al., Z. Phys. C 9, 293 (1981).

    Article  ADS  Google Scholar 

  75. T. Akesson et al., Nucl. Phys. B 203, 27 (1982).

    Article  ADS  Google Scholar 

  76. T. Blum et al., Phys. Rev. D 51, 5153 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  77. R. Rapp, Phys. Rev. C 66, 017901 (2002).

    Google Scholar 

  78. R. Rapp and E. V. Shuryak, Phys. Rev. Lett. 86, 2980 (2001).

    Article  ADS  Google Scholar 

  79. S. S. Adler et al., Phys. Rev. C 69, 034909 (2004).

  80. E. Schnedermann, J. Sollfrank, and U. W. Heinz, Phys. Rev. C 48, 2462 (1994).

    Article  ADS  Google Scholar 

  81. C. Adler et al., Phys. Rev. Lett. 89, 092301 (2002).

  82. J. Adams et al., Phys. Lett. B 595, 143 (2004).

    Article  ADS  Google Scholar 

  83. J. Adams et al., Phys. Rev. C 70, 041901 (2004).

  84. B. Tomasik. arXiv:hep-th/0304079v1 (2003).

  85. I. Arsene et al., Phys. Rev. C 72, 014908-1 (2005).

  86. F. Retiere and M. A. Lisa, Phys. Rev. C 70, 044907 (2002).

    Google Scholar 

  87. T. Csorgo and B. Lorstad, Phys. Rev. C 54, 1390 (1996).

    Article  ADS  Google Scholar 

  88. T. Csorgo, S. V. Akkelin, Y. Hama, et al., Phys. Rev. C 67, 034904 (2003).

  89. K. Adcox et al., Phys. Rev. Lett. 88, 92302 (2002).

  90. C. Adler et al., Phys. Rev. Lett. 87, 082301 (2001).

  91. K. Adcox et al., Phys. Rev. C 69, 024904 (2004).

  92. H. Dobler, J. Sollfrank, and U. W. Heinz, Phys. Lett. B 457, 353 (1999).

    Article  ADS  Google Scholar 

  93. C. Alt et al., J. Phys. G 30, S119 (2004).

    Article  Google Scholar 

  94. T. Peitzmann, Eur. Phys. J. C 26, 539 (2003).

    Article  ADS  Google Scholar 

  95. M. M. Aggarwal et al., Phys. Rev. C 67, 014906 (2003).

  96. J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004).

  97. S. Wang et al., Phys. Rev. Lett. 74, 2646 (1995).

    Article  ADS  Google Scholar 

  98. S. Albergo et al., Phys. Rev. C 65, 034907 (2002).

  99. T. A. Armstrong et al., Phys. Rev. Lett. 85, 2685 (2000).

    Article  ADS  Google Scholar 

  100. T. Anticic et al., Phys. Rev. C 69, 024902 (2004).

  101. G. Bearden et al., Phys. Rev. Lett. 85, 2681 (2000).

    Article  ADS  Google Scholar 

  102. S.S. Adler et al., Phys. Rev. Lett. 94, 122302 (2005).

  103. S. T. Butler and C. A. Pearson, Phys. Rev. 129, 863 (1963).

    Article  Google Scholar 

  104. M. J. Tanenbaum, Rep. Prog. Phys. 69, 2005 (2006).

    Article  ADS  Google Scholar 

  105. P.F. Kolb, J. Sollfrank, and U. W. Heinz, Phys. Rev. C 62, 054909 (2000).

    Google Scholar 

  106. C. Alt et al., Phys. Rev. C 68, 034903 (2003).

  107. G. Agakichiev et al., Phys. Rev. Lett. 92, 032301 (2004).

  108. P. F. Kolb and U. Heinz, in Quark Gluon Plasma 3, Ed. by R. C. Hwa and X. N. Wang (World Scientific, Singapore, 2003).

    Google Scholar 

  109. J. Adams et al., Phys. Rev. C 72, 014904 (2005).

  110. E. Shuryak, arXiv:hep-th/0405066v1 (2006).

  111. K. Adcox et al., Phys. Rev. Lett. 89, 212301 (2002).

  112. F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).

    Article  ADS  Google Scholar 

  113. D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003).

    Google Scholar 

  114. D. H. Rischke and M. Gyulassy, Nucl. Phys. A 597, 701 (1996).

    Article  ADS  Google Scholar 

  115. G. F. Bertsch, Nucl. Phys. A 478, 173c (1996).

    Google Scholar 

  116. S. Pratt, Phys. Rev. D 33, 1314 (1986).

    Article  ADS  Google Scholar 

  117. S. S. Adler et al., Phys. Rev. Lett. 93, 152302 (2004).

  118. J. Adams et al., Phys. Rev. Lett. 93, 012301 (2004).

  119. T. Hirano and K. Tsuda, Phys. Rev. C 66, 054905 (2002).

  120. U. Heinz, A. Hummel, M. A. Lisa, and U. A. Wiedemann, Phys. Rev. C 66, 044903 (2002).

    Google Scholar 

  121. S. Soff, hep-ph/0202240 (2002).

  122. S. Pratt, Phys. Rev. Lett. 53, 1219 (1984).

    Article  ADS  Google Scholar 

  123. A. N. Makhlin and Y. M. Sinyukov, Z. Phys. C 39, 69 (1988).

    Article  ADS  Google Scholar 

  124. S. Pratt, T. Csoergoe, and J. Zimanyi, Phys. Rev. C 42, 2646 (1990).

    Article  ADS  Google Scholar 

  125. M. Sinyukov, S. V. Akkelin, and Y. Hama, Phys. Rev. Lett. 89, 052301 (2002).

    Google Scholar 

  126. F. Grassi, Y. Hama, S. S. Padula, and J. Socolowski, Phys. Rev. C 62, 044904 (2000).

    Google Scholar 

  127. S. Soff, S. A. Bass, and A. Dumitru, Phys. Rev. Lett. 86, 398 (2001).

    Article  ADS  Google Scholar 

  128. D. Zschiesche, S. Schramm, H. Stocker, and W. Greiner, Phys. Rev. C 65, 064902 (2002).

    Google Scholar 

  129. G. Bertsch, M. Gong, and M. Tohyama, Phys. Rev. C 37, 1896 (2002).

    Article  ADS  Google Scholar 

  130. D. Bjorken, FERMILAB-PUB-82-059-THY (1982).

  131. M. H. Thoma and M. Gyulassy, Nucl. Phys. B 351, 491 (1991).

    Article  ADS  Google Scholar 

  132. E. Braaten and M. H. Thoma, Phys. Rev. D 44, 2625 (1991).

    Article  ADS  Google Scholar 

  133. F. Aversa, P. Chiappetta, M. Greco, and J. P. Guillet, Nucl. Phys. B 327, 105 (1989).

    Article  ADS  Google Scholar 

  134. B. Jager, A. Schafer, M. Stratmann, and W. Vogelsang, Phys. Rev. D 67, 054005 (2003).

    Google Scholar 

  135. S. Kretzer, Phys. Rev. D 62, 054001 (2000).

    Google Scholar 

  136. B. A. Kniehl, G. Kramer, and B. Potter, Nucl. Phys. B 597, 337 (2001).

    Article  ADS  Google Scholar 

  137. S. Albino, B. A. Kniehl, and G. Kramer, Nucl. Phys. B 725, 181 (2005).

    Article  ADS  MATH  Google Scholar 

  138. X-N. Wang, Phys. Rev. C 58, 2321 (1998).

    Article  ADS  Google Scholar 

  139. K. J. Eskola, R. Vogt, and X.-N. Wang, Int. J. Mod. Phys. A 10, 3087 (1995).

    Article  ADS  Google Scholar 

  140. A. L. S. Angelis et al., Nucl. Phys. B 185, 213 (1987).

    Google Scholar 

  141. E. Wang and X. N. Wang, Phys. Rev. C 64, 034901 (2001).

  142. C. N. Brown et al., Phys. Rev. C 54, 3195 (1996).

    Article  ADS  Google Scholar 

  143. M. M. Aggarwal et al., Eur. Phys. J. C 23, 225 (2002).

    Article  ADS  Google Scholar 

  144. R. Albrecht et al., Eur. Phys. J. C 5, 255 (1998).

    Article  ADS  Google Scholar 

  145. D. Antreasyan et al., Phys. Rev. D 19, 764 (1979).

    Article  ADS  Google Scholar 

  146. A. Krzywicki, J. Engels, B. Petersson, and U. Sukhatme, Phys. Lett. B 85, 407 (1979).

    Article  ADS  Google Scholar 

  147. M. Lev and B. Petersson, Z. Phys. C 21, 155 (1983).

    Article  ADS  Google Scholar 

  148. I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002).

    Google Scholar 

  149. http://qm2005.kfki.hu (2005).

  150. S. S. Adler et al., nucl-th/0510047v1 (2005).

  151. M. Djordjevic, M. Gyulassy, R. Vogt, and S. Wicks, nucl-th/0507019 (2004).

  152. J. Adams et al., Phys. Rev. Lett. 91, 072304 (2003).

  153. C. Adler et al., Phys. Rev. Lett. 90, 082302 (2003).

  154. J. Adams et al., Phys. Rev. Lett. 93, 252301 (2004).

  155. L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1998).

    Article  ADS  Google Scholar 

  156. D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Phys. Rev. D 68, 094013 (2003).

    Google Scholar 

  157. S. S. Adler et al., arXiv:nucl-ex/0503003v1 (2005).

  158. M. Gyulassy, I. Vitev, X.-N. Wang, et al., nucl-th/0302077 (2003).

  159. M. Gyulassy, arXiv:nucl-th/0403032v1 (2004).

  160. J. Breitweg et al., Eur. Phys. J. C 7, 609 (1999).

    Article  ADS  Google Scholar 

  161. M. Gyulassy and L. McLerran, arXiv:nucl-th0405013v2 (2004).

  162. I. Arsene et al., Phys. Rev. Lett. 94, 032301 (2005).

  163. L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rept. 100, 1 (1983).

    Article  ADS  Google Scholar 

  164. L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994).

    Article  ADS  Google Scholar 

  165. L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 3352 (1994).

    Article  ADS  Google Scholar 

  166. L. D. McLerran and R. Venugopalan, Phys. Rev. D 50, 2225 (1994).

    Article  ADS  Google Scholar 

  167. A. H. Mueller, Nucl. Phys. B 335, 115 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  168. A. H. Mueller, Nucl. Phys. B 572, 227 (2002).

    Article  ADS  Google Scholar 

  169. E. Shuryak, arXiv:hep-ph/0405066v1 (2004).

  170. M. Gyulassy and L. McLerran, arXiv:nucl-th/0405013v2 (2004).

  171. Quark Matter 2005 http://www.kfki.hu/events/hun/qm2005/ (2005).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Litvinenko, 2007, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2007, Vol. 38, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinenko, A.G. Some results obtained at the relativistic heavy ion collider. Phys. Part. Nuclei 38, 204–231 (2007). https://doi.org/10.1134/S1063779607020037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779607020037

PACS numbers

Navigation