Skip to main content

Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology, Volume 127

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 127))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albina JE, Cui S, Mateo RB, Reichner JS (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150: 5080–5085

    CAS  PubMed  Google Scholar 

  • Althaus FR, Richter C (eds) (1987) ADP-ribosylation of proteins: enzymology and biological significance. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ankarcrona M, Dypbukt JM, BrĂ¼ne B, Nicotera P (1994) Interleukin-1b-induced nitric oxide production activates apoptosis in pancreatic RINm5F cells. Exp Cell Res 213: 172–177

    Article  CAS  PubMed  Google Scholar 

  • Antonietta de Matteis M, di Girolamo M, Colanzi A, Pallas M, di Tullio G, McDonald LJ, Moss J, Santini G, Bannykh S, Corda D, Luini A (1994) Stimulation of endogenous ADP-ribosylation by brefeldin A. Proc Natl Acad Sci USA 91: 1114–1118

    Google Scholar 

  • Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74: 3203–3207

    CAS  PubMed  Google Scholar 

  • Bates JN, Baker MT, Guerra R Jr, Harrison DG (1991) Nitric oxide generation from nitroprusside by vascular tissue. Biochem Pharmacol 42: 157–165

    Article  Google Scholar 

  • Beckmann J (1991) The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15: 53–59

    Google Scholar 

  • Bennett BM, McDonald BJ, Nigam R, Simon WC (1994) Biotransformation of organic nitrates and vascular smooth muscle cell function. TIPS 15: 245–249

    CAS  PubMed  Google Scholar 

  • Boyd RS, Donnelly LE, Allport JR, MacDermot J (1993) Sodium nitroprusside promotes NAD+ labelling of a 116-kDa protein in NG108-15 cell homogenates. Biochem Biophys Res Commun 197: 1277–1282

    Article  CAS  PubMed  Google Scholar 

  • BrĂ¼ne B, Lapetina EG (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J Biol Chem 264: 8455–8458

    PubMed  Google Scholar 

  • BrĂ¼ne B, Lapetina EG (1990) Properties of a novel nitric oxide-stimulated ADP-ribosyltransferase. Arch Biochem Biophys 279: 286–290

    PubMed  Google Scholar 

  • BrĂ¼ne B, Ullrich V (1987) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 32: 497–504

    PubMed  Google Scholar 

  • BrĂ¼ne B, Schmidt K-U, Ullrich V (1990) Activation of soluble guanylate cyclase by carbon monoxide and inhibition by superoxide anion. Eur J Biochem 192: 683–688

    PubMed  Google Scholar 

  • BrĂ¼ne B, Dimmeler S, Lapetina EG (1992) NADPH: a stimulatory cofactor for nitric oxide-induced ADP-ribosylation reaction. Biochem Biophys Res Commun 182: 1166–1171

    PubMed  Google Scholar 

  • BrĂ¼ne B, Dimmeler S, Molina y Vedia L, Lapetina EG (1994) Nitric oxide:a signal for ADP-ribosylation of proteins. Life Sci 54: 61–70

    Article  PubMed  Google Scholar 

  • Choi DW (1993) Nitric oxide: foe or friend to the injured brain? Proc Natl Acad Sci USA 90: 9741–9743

    CAS  PubMed  Google Scholar 

  • Claiborne AL, Miller H, Parsonage D, Ross RP (1993) Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J 7: 1483–1490

    CAS  PubMed  Google Scholar 

  • Clancy RM, Leszczynska-Piziak J, Abramson SB (1993) Nitric oxide stimulates the ADP-ribosylation of actin in human neutrophils. Biochem Biophys Res Commun 191: 847–852

    Article  CAS  PubMed  Google Scholar 

  • Collins RJ, Harmon BV, Gobe GC, Kerr JFR (1992) Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61: 451–453

    CAS  PubMed  Google Scholar 

  • Corcoran GB, Fix L, Jones DP, Moslen MT, Nicotera P, Oberhammer F, Buttyan R (1994) Apoptosis: molecular control point in toxicity. Toxicol Appl Pharmacol 128: 169–181

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14: 5147–5159

    CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13: 2651–2661

    CAS  PubMed  Google Scholar 

  • Delaney CA, Green MHL, Lowe JE, Green IC (1993) Endogenous nitric oxide induced by interleukin-1b in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the ‘comet’ assay. FEBS Lett 333: 291–295

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, BrĂ¼ne B (1991) 1-arginine stimulates an endogenous ADP-ribosyltransferase. Biochem Biophys Res Commun 178: 848–855

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, BrĂ¼ne B (1992) Characterization of a nitric-oxide-catalysed ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 210: 305–310

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, BrĂ¼ne B (1993) Nitric oxide preferentially stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase compared to alcohol or lactate dehydrogenase. FEBS Lett 315: 21–24

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Lottspeich F, BrĂ¼ne B (1992) Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 267: 16771–16774

    CAS  PubMed  Google Scholar 

  • Dimmeler S, Ankarcrona M, Nicotera P, BrĂ¼ne B (1993) Exogenous nitric oxide (NO)-generation or IL-1b induced intracellular NO production stimulates inhibitory auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase in RINm5F cells. J Immunol 150: 2964–2971

    CAS  PubMed  Google Scholar 

  • Dimmeler S, MeĂŸmer UK, Tiegs G, BrĂ¼ne B (1994) Modulation of glyceraldehyde-3-phosphate dehydrogenase in Salmonella abortus equi lipopolysaccharide-treated mice. Eur J Pharmacol 267: 105–112

    CAS  PubMed  Google Scholar 

  • Duman RS, Terwilliger RZ, Nestler EJ (1993) Alterations is nitric oxide stimulated endogenous ADP-ribosylation associated with long-term potentiation in rat hippocampus. J Neurochem 61: 1542–1545

    CAS  PubMed  Google Scholar 

  • Eizirik DL, Sandler S, Palmer JP (1993) Repair of pancreatic b-cells. Diabetes 42: 1383–1391

    CAS  PubMed  Google Scholar 

  • Feelisch M, Te Poel M, Zamora R, Deussen A, Moncada S (1994) Understanding the controversy over the identity of EDRF. Nature 368: 62–65

    Article  CAS  PubMed  Google Scholar 

  • Fehsel K, Jalowy A, Qi S, Burkart V, Hartmann B, Kolb H (1993) Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42: 496–500

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J (1993) Nitric oxide signalling in the nervous system. The Neurosciences 5: 171–180

    CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain. Nature 336: 385–388

    Article  CAS  PubMed  Google Scholar 

  • Graven KK, Troxler RF, Kornfeld H, Panchenko MV, Farber HW (1994) Regulation of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia. J Biol Chem 269: 24446–24453

    CAS  PubMed  Google Scholar 

  • Green LC, Tannenbaum SR, Goldman P (1981) Nitrate synthesis in the germ-free and conventional rat. Science 212: 56–58

    CAS  PubMed  Google Scholar 

  • Heiss LN, Lancaster JR Jr, Corbett JA, Goldman WE (1994) Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc Natl Acad Sci USA 91: 267–270

    CAS  PubMed  Google Scholar 

  • Henry Y, Lepoivre M, Drapier J-C, Ducrocq C, Boucher JL, Guissani A (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 7: 1124–1134

    CAS  PubMed  Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for 1-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235: 473–476

    CAS  PubMed  Google Scholar 

  • Hilz H, Koch R, Fanick W, Klapproth K, Adamietz P (1984) Nonenzymatic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci USA 81: 3929–3933

    CAS  PubMed  Google Scholar 

  • Ignarro LJ (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 30: 535–560

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MK, Jacobson EL (eds) (1989) ADP-ribose transfer reactions: mechanisms and biological significance. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Just I, Wollenberg P, Moss J, Aktories K (1994) Cystein-specific ADP-ribosylation of actin. Eur J Biochem 221: 1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    CAS  PubMed  Google Scholar 

  • Kitajima I, Kawahara K, Nakajima T, Soejima Y, Matsuyama T, Maruyama I (1994) Nitric oxide-mediated apoptosis in murine mastocytoma. Biochem Biophys Res Commun 204: 244–251

    Article  CAS  PubMed  Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298: 249–258

    CAS  PubMed  Google Scholar 

  • Kots AY, Skurat AV, Sergienko EA, Bulargina TV, Severin ES (1992) Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett 300: 9–12

    Article  CAS  PubMed  Google Scholar 

  • Kröncke K-D, Brenner H-H, Rodriguez M-L, Etzkorn K, Noack EA, Kolb H, Kolb-Bachofen V (1993) Pancreatic islet cells are highly susceptible towards the cytotoxic effects of chemically generated nitric oxide. Biochim Biophys Acta 1182: 221–229

    PubMed  Google Scholar 

  • Lee HC (1994) Cyclic ADP-ribose: a new member of super family of signalling cyclic nucleotides. Cell Signal 6: 591–600

    Article  CAS  PubMed  Google Scholar 

  • Lincolin TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7: 328–338

    Google Scholar 

  • Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626–632

    CAS  PubMed  Google Scholar 

  • Lowenstein CJ, Snyder SH (1992) Nitric oxide, a novel biologic messenger. Cell 70: 705–707

    CAS  PubMed  Google Scholar 

  • Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78: 927–930

    Article  CAS  PubMed  Google Scholar 

  • McDonald B, Reep B, Lapetina EG, Molina y Vedia L (1993) Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets. Proc Natl Acad Sci USA 90: 11122–11126

    CAS  PubMed  Google Scholar 

  • McDonald LJ, Moss J (1993) Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 90: 6238–6241

    CAS  PubMed  Google Scholar 

  • MeĂŸmer UK, BrĂ¼ne B (1994) Modulation of inducible nitric oxide synthase in RINm5F cells. Cell Signal 6: 17–24

    PubMed  Google Scholar 

  • MeĂŸmer UK, Ankarcrona M, Nicotera P, BrĂ¼ne B (1994) p53 expression in nitric oxide-induced apoptosis. FEBS Lett 355: 23–26

    Article  PubMed  Google Scholar 

  • Mitchell HH, Shonle HA, Grindley HS (1916) The origin of the nitrates in the urine. J Biol Chem 24: 461–490

    CAS  Google Scholar 

  • Mohr S, Stamler JS, BrĂ¼ne B (1994) Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 348: 223–227

    Article  CAS  PubMed  Google Scholar 

  • Molina y Vedia L, McDonald B, Reep B, BrĂ¼ne B, DiSilvio M, Billiar TR, Lapetina EG (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267: 24929–24932

    CAS  PubMed  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064

    CAS  PubMed  Google Scholar 

  • Nathan C, Xie Q-W (1994a) Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915–918

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Xie Q-W (1994b) Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725–13728

    CAS  PubMed  Google Scholar 

  • Noack E, Murphy M (1991) Vasodilation and oxygen radical scavenging by nitric oxide/EDRF and organic nitrovasodilators. In: Sies H (ed) Oxidative stress; oxidants and antioxidants. Academic, San Diego, pp 445–489

    Google Scholar 

  • Nussler AK, Billiar TR (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54: 171–178

    CAS  PubMed  Google Scholar 

  • Orrenius S, McConkey D, Jones DP, Nicotera P (1988) Ca2+-activated mechanisms in toxicity and programmed cell death. ISI atlas of science: pharmacology, pp 318–324

    Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from 1-arginine. Nature 333: 664–666

    Article  CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  CAS  PubMed  Google Scholar 

  • Pancholi V, Fischetti VA (1993) Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci USA 90: 8154–8158

    CAS  PubMed  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. J Biol Chem 266: 4244–4250

    CAS  PubMed  Google Scholar 

  • Radons J, Heller B, BĂ¼rkle A, Hartmann B, Rodriguez M-L, Kröncke K-D, Burkart V, Kolb H (1994) Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem Biophys Res Commun 199: 1270–1277

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran V, Seres T, Moriguchi T, Thomas JA, Johnston RB Jr (1994) S-Thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem 269:25010–25015

    CAS  PubMed  Google Scholar 

  • Reddy D, Lancaster JR Jr, Cornforth DP (1983) Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science 221: 769–770

    CAS  PubMed  Google Scholar 

  • Reinhard M, HalbrĂ¼gge M, Scheer U, Wiegand C, Jockusch BM, Walter U (1992) The 46/50-kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11: 2063–2070

    CAS  PubMed  Google Scholar 

  • Richter C, Frei B (1988) Calcium release from mitochondria induced by prooxidants. Free Radic Biol Med 4: 365–375

    Article  CAS  PubMed  Google Scholar 

  • Sarih M, Souvannavong V, Adam A (1993) Nitric oxide induces macrophage death by apoptosis. Biochem Biophys Res Commun 191: 503–508

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HHHW (1992) NO, CO and OH endogenous soluble guanylyl cyclase-activating factors. FEBS Lett 307: 102–107

    CAS  PubMed  Google Scholar 

  • Schmidt HHHW, Walter U (1994) NO at work. Cell 78: 919–925

    Article  CAS  PubMed  Google Scholar 

  • Schultz K-D, Schultz K, Schultz G (1977) Sodium nitroprusside and other smooth muscle relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265: 750–751

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a calcium-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105: 575–580

    CAS  PubMed  Google Scholar 

  • Schuppe-Koistinen I, Moldeus P, Bergman T, Cotgrave IA (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem 221: 1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14: 133–151

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH (1992) Nitric oxide: first in a new class of neutrotransmitters? Science 257: 494–496

    CAS  PubMed  Google Scholar 

  • Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78: 931–936

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258: 1898–1902

    CAS  PubMed  Google Scholar 

  • Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82: 7738–7742

    CAS  PubMed  Google Scholar 

  • Tannenbaum SR, Fett D, Young VR, Land PD, Bruce WR (1978) Nitrite and nitrate are formed by endogenous synthesis in the human intestine. Science 200: 1487–1489

    CAS  PubMed  Google Scholar 

  • Tao Y, Howlett A, Klein C (1992) Nitric oxide stimulates the ADP-ribosylation of a 41-kDa cytosolic protein in Dictyostelium discoideum. Proc Natl Acad Sci USA 89: 5902–5906

    CAS  PubMed  Google Scholar 

  • Tao Y, Howlett AC, Klein C (1993) Endogenous ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase that is not regulated by nitric oxide in Dictyostelium discoideum. Cell Signal 5: 763–775

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Howlett A, Klein C (1994) Nitric oxide regulation of glyceraldehyde-3-phosphate dehydrogenase activity in Dictyostelium discoideum cells and lysates. Eur J Biochem 224: 447–454

    Article  CAS  PubMed  Google Scholar 

  • Tremblay J, Gerzer R, Hamet P (1988) Cyclic GMP in cell function. Adv Second Messenger Phosphorprotein Res 22: 319–383

    CAS  Google Scholar 

  • Vaidyanathan VV, Sastry PS, Ramasarma T (1993) Inverse relationship of the dehydrogenase and ADP-ribosylation activities in sodium-nitroprusside-treated glyceraldehyde-3-phosphate dehydrogenase is coincidental. Biochim Biophys Acta 1203: 36–44

    CAS  PubMed  Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide, a putative neural messenger. Science 259: 381–384

    CAS  PubMed  Google Scholar 

  • Vezzani A, Sparvoli S, Rizzi M, Zinetti M, Fratelli M (1994) Changes in the ADP-ribosylation status of some hippocampal proteins are linked to kindling progression. Neuroreport 5: 1217–1220

    CAS  PubMed  Google Scholar 

  • Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39: 163–196

    CAS  PubMed  Google Scholar 

  • Walter U (1989) Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 113: 41–88

    CAS  PubMed  Google Scholar 

  • Williams MB, Li X, Gu X, Jope RS (1992) Modulation of endogenous ADP-ribosylation in rat brain. Brain Res 592: 49–52

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK (1991) DNA-deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001–1003

    CAS  PubMed  Google Scholar 

  • Yau K-W (1994) Cyclic nucleotide-gated channels: an expanding new familiy of ion channels. Proc Natl Acad Sci USA 91: 3481–3483

    CAS  PubMed  Google Scholar 

  • Zhang J, Snyder SH (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phophate dehydrogenase. Proc Natl Acad Sci USA 89: 9382–9385

    CAS  PubMed  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263: 687–689

    CAS  PubMed  Google Scholar 

  • Zhuo M, Small SA, Kandel ER, Hawkins RD (1993) Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260: 1946–1950

    CAS  PubMed  Google Scholar 

  • Zocchi E, Guida L, Franco L, Silvestro L, Guerrini M, Benatti U, de Flora A (1993) Free ADP-ribose in human erythrocytes: pathways of intra-erythrocytic conversion and non-enzymatic binding to membrane proteins. Biochem J 295: 121–130

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

BrĂ¼ne, B., Mohr, S., Messmer, U.K. (1995). Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 127. Reviews of Physiology, Biochemistry and Pharmacology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0048263

Download citation

  • DOI: https://doi.org/10.1007/BFb0048263

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60135-7

  • Online ISBN: 978-3-540-49453-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics