Skip to main content
Log in

On Ultrahigh-Energy Neutrino-Nucleon Deep-Inelastic Scattering and the Froissart Bound

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A brief review of the results for the total cross section \(\sigma^{\nu N}\) of ultrahigh-energy neutrino deep inelastic scattering on isoscalar nuclear targets is presented. These results are based on simple approximations for \(\sigma^{\nu N}\) and are compared with the experimental data of the IceCube Collaboration. The total cross section \(\sigma^{\nu N}\) is proportional to the structure function \(F_{2}^{\nu N}(M_{V}^{2}/s,M_{V}^{2})\), where \(M_{V}\) is the intermediate boson mass and \(s\) is square of the energy of the center of mass. The coefficient in the front of \(F_{2}^{\nu N}(M_{V}^{2}/s,M_{V}^{2})\) depends on the asymptotic behavior of \(F_{2}^{\nu N}\) at low values of \(x\). It contains an additional term \(\sim\ln{s}\) if \(F_{2}^{\nu N}\) is scaled by the power \(\ln(1/x)\). Therefore, the asymptotic behavior of \(F_{2}^{\nu N}\propto\ln^{2}(1/x)\) for small \(x\) often assumed in the literature already leads to violation of the Froissart bound for \(\sigma^{\nu N}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Notes

  1. We checked that the contribution to Eq. (5) from \(F^{\ell N}_{2,\text{BBT}}\), valid in the range \(x_{P}<x<1\), is numerically insignificant, according to [16, 18].

  2. Figure 1 shows the experimental data obtained using the so-called Frequentist analysis (see [2]). Data based on so-called Bayesian analysis has slightly larger uncertainties and is not shown. They can be found in [1, 2].

REFERENCES

  1. M. G. Aartsen et al. (IceCube Collab.), Nature (London, U.K.) 551, 596 (2017).

    ADS  CAS  Google Scholar 

  2. R. Abbasi et al. (IceCube Collab.), Phys. Rev. D 104, 022001 (2021).

  3. A. Y. Illarionov, B. A. Kniehl, and A. V. Kotikov, Phys. Rev. Lett. 106, 231802 (2011).

  4. M. Froissart, Phys. Rev. 123, 1053 (1961);

    Article  ADS  CAS  Google Scholar 

  5. A. Martin, Phys. Rev. D 80, 065013 (2009).

  6. D. W. McKay and J. P. Ralston, Phys. Lett. B 167, 103 (1986);

    Article  ADS  Google Scholar 

  7. G. M. Frichter, D. W. McKay, and J. P. Ralston, Phys. Rev. Lett. 74, 1508 (1995);

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Phys. Rev. Lett. 77, 4107(E) (1996).

  9. E. L. Berger, M. M. Block, D. W. McKay, and C.-I. Tan, Phys. Rev. D 77, 053007 (2008).

  10. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

  11. A. V. Kotikov, Phys. Lett. B 338, 349 (1994);

    Article  ADS  CAS  Google Scholar 

  12. L. P. Kaptari, A. V. Kotikov, N. Y. Chernikova, and P. Zhang, Phys. Rev. D 99, 096019 (2019);

  13. JETP Lett. 109, 281 (2019).

  14. F. D. Aaron et al. (H1 and ZEUS Collabs.), J. High Energy Phys. 1001, 109 (2010).

    Article  ADS  Google Scholar 

  15. C. Lopez and F. J. Yndurain, Nucl. Phys. B 171, 231 (1980);

    Article  ADS  Google Scholar 

  16. Nucl. Phys. B 183, 157 (1981);

  17. A. V. Kotikov, Phys. Rev. D 49, 5746 (1994);

    Article  ADS  CAS  Google Scholar 

  18. Phys. At. Nucl. 57, 133 (1994);

  19. Phys. Part. Nucl. 38, 1 (2007).

  20. R. Fiore, L. L. Jenkovszky, A. Kotikov, F. Paccanoni, A. Papa, and E. Predazzi, Phys. Rev. D 68, 093010 (2003);

  21. Phys. Rev. D 71, 033002 (2005);

  22. R. Fiore, L. L. Jenkovszky, A. V. Kotikov, F. Paccanoni, and A. Papa, Phys. Rev. D 73, 053012 (2006).

  23. A. V. Kotikov and G. Parente, Nucl. Phys. B 549, 242 (1999);

    Article  ADS  Google Scholar 

  24. A. Y. Illarionov, A. V. Kotikov, and G. Parente, Part. Nucl. Phys. 39, 307 (2008);

    Article  CAS  Google Scholar 

  25. G. Cvetic, A. Y. Illarionov, B. A. Kniehl, and A. V. Kotikov, Phys. Lett. B 679, 350 (2009).

    Article  ADS  CAS  Google Scholar 

  26. A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 64, 653 (2009).

    Article  ADS  CAS  Google Scholar 

  27. H.-L. Lai et al. (CTEQ Collab.), Phys. Rev. D 82, 074024 (2010).

  28. D. Haidt, Nucl. Phys. B Proc. Suppl. 79, 186 (1999).

    Article  ADS  CAS  Google Scholar 

  29. M. M. Block, E. L. Berger, and C.-I. Tan, Phys. Rev. Lett. 97, 252003 (2006);

  30. Phys. Rev. Lett. 98, 242001 (2007).

  31. R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, Phys. Rev. D 58, 093009 (1998);

  32. H. Athar, G. Parente, and E. Zas, Phys. Rev. D 62, 093010 (2000);

  33. N. Armesto, C. Merino, G. Parente, and E. Zas, Phys. Rev. D 77, 013001 (2008).

  34. M. M. Block, P. Ha, and D. W. McKay, Phys. Rev. D 82, 077302 (2010).

  35. M. G. Aartsen et al. (IceCube-Gen2 Collab.), J. Phys. G 48, 060501 (2021).

Download references

Funding

The work of A.V.K. was supported in part by the Russian Science Foundation under grant 22-22-00387. He thanks the Organizing Committee of the 4th International Symposium on Cosmic Rays and Astrophysics (ISCRA-2023) for their invitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kotikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotikov, A.V., Kotikov, I.A. On Ultrahigh-Energy Neutrino-Nucleon Deep-Inelastic Scattering and the Froissart Bound. Phys. Atom. Nuclei 86, 1275–1280 (2023). https://doi.org/10.1134/S1063778824010241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010241

Navigation