Skip to main content
Log in

On Features of Formation of Localized Shear Bands in Depleted Uranium

  • MATHEMATICAL MODELING IN NUCLEAR TECHNOLOGIES
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The processes of plastic shear localization in DU-0.75Ti alloy samples subjected to high-speed shear are considered. A mathematical model describing this process in the 1D and 2D cases is formulated. A numerical algorithm for the mathematical modeling of the processes under consideration is proposed. A series of computational experiments on high-speed loading of DU samples is carried out. The localization process dynamics depending on the initial rate of plastic shear is investigated. The values of the temperature, velocity, stress, and shear fields are obtained. The influence of the problem dimension on some of the most important characteristics of the localization process is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. D. Rittel, Mater. Lett. 59, 1845 (2005).

    Article  CAS  Google Scholar 

  2. D. Rittel, Z. G. Wang, and M. Merzer, Phys. Rev. Lett. 96, 075502 (2006).

  3. D. Rittel and S. Osovski, Int. J. Fract. 162, 177 (2010).

    Article  Google Scholar 

  4. D. A. Shockey, A. Marchand, S. Skaggs, et al., Int. J. Impact Eng. 9, 263 (1990).

    Article  Google Scholar 

  5. D. Shockey, J. Simons, C. Brown, and T. Kobayashi, Exp. Mech. 47, 723 (2007).

    Article  Google Scholar 

  6. T. W. Wright, The Physics and Mathematics of Adiabatic Shear Bands (Cambridge Univ. Press, Cambridge, 2002), p. 240.

    Google Scholar 

  7. S. Timothy, Acta Metall. 35, 301 (1987).

    Article  CAS  Google Scholar 

  8. G. L. Moss, Shock Waves and High-Strain-Rate Phenomena in Metals (Springer, Berlin, 1981), p. 299.

    Google Scholar 

  9. J. A. Schneider and A. C. Nunes, Metall. Mater. Trans. B 35, 777 (2004).

    Article  Google Scholar 

  10. M. Hammerschmidt and H. Kreye, Shock Waves and High-Strain-Rate Phenomena in Metals (Springer, US, 1981).

    Google Scholar 

  11. T. U. Seidel and A. P. Reynolds, Metall. Mater. Trans. A 32, 2879 (2001).

    Article  Google Scholar 

  12. A. Marchand and J. Duffy, J. Mech. Solids 36, 251 (1988).

    Article  ADS  Google Scholar 

  13. J. Duffy, J. D. Campbell, and R. H. Hawley, J. Appl. Mech. 38, 83 (1971).

    Article  ADS  Google Scholar 

  14. B. Song, Y. Ge, W. Chen, and T. Weerasooriya, Exp. Mech. 47, 659 (2007).

    Article  Google Scholar 

  15. K. Ramesh and S. Narasimhan, Int. J. Solids Struct. 33, 3723 (1996).

    Article  Google Scholar 

  16. N. Ranc, L. Taravella, V. Pina, and P. Herve, Mech. Mater. 40, 255 (2008).

    Article  Google Scholar 

  17. V. F. Nesterenko, M. A. Meyers, and T. W. Wright, Acta Mater. 46, 327 (1998).

    Article  ADS  CAS  Google Scholar 

  18. V. Nesterenko and M. Bondar, Combust. Explos. Shock Waves. 30, 500 (1994).

    Article  Google Scholar 

  19. Q. Xue, M. A. Meyers, and V. F. Nesterenko, Acta Mater. 50, 575 (2002).

    Article  ADS  CAS  Google Scholar 

  20. F. Zhou, T. W. Wright, and K. T. Ramesh, J. Mech. Phys. Solids 54, 1376 (2006).

    Article  ADS  CAS  Google Scholar 

  21. N. A. Kudryashov, P. N. Ryabov, and A. S. Zakharchenko, J. Mech. Phys. Solids 76, 180 (2015).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. T. W. Wright and H. Ockendon, Int. J. Plast. 12, 927 (1996).

    Article  Google Scholar 

  23. T. W. Wright and J. W. Walter, J. Mech. Phys. Solids 35, 701 (1987).

    Article  ADS  Google Scholar 

  24. A. Molinari and R. Clifton, J. Appl. Mech. 54, 806 (1987).

    Article  ADS  Google Scholar 

  25. J. Q. Xie, A. E. Bayoumi, and H. M. Zbib, J. Mater. Eng. Perform. 4, 32 (1995).

    Article  CAS  Google Scholar 

  26. D. E. Grady, J. Mech. Phys. Solids 40, 1197 (1992).

    Article  ADS  CAS  Google Scholar 

  27. D. E. Grady and M. E. Kipp, J. Mech. Phys. Solids 35, 95 (1987).

    Article  ADS  Google Scholar 

  28. D. E. Grady, J. Phys. IV 1, C3-653 (1991).

    ADS  Google Scholar 

  29. N. A. Kudryashov, R. V. Muratov, and P. N. Ryabov, Appl. Math. Comput. 338, 164 (2018).

    Article  MathSciNet  Google Scholar 

  30. V. A. Dobrev, T. V. Kolev, and R. N. Rieben, J. Comput. Phys. 257, 1062 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  31. J. H. Tillotson, General Atomic Report No. GA-3216 (1962).

  32. A. L. Brundage, Proc. Eng. 58, 461 (2013).

    Article  CAS  Google Scholar 

  33. S. Stewart, E. Davies, M. Duncan, et al., AIP Conf. Proc. 2272, 080003 (2020).

  34. J. W. Walter, Int. J. Plast. 8, 657 (1992).

    Article  ADS  Google Scholar 

  35. F. Zhou, T. W. Wright, and K. T. Ramesh, J. Mech. Phys. Solids 54, 904 (2006).

    Article  ADS  Google Scholar 

  36. R. C. Batra and D. Liu, J. Appl. Mech. 56, 527 (1989).

    Article  ADS  Google Scholar 

  37. M. Meyer, G. Hofman, S. Hayes, et al., J. Nucl. Mater. 304, 221 (2002).

    Article  ADS  CAS  Google Scholar 

  38. S. Parida, S. Dash, Z. Singh, et al., J. Phys. Chem. Solids 62, 585 (2001).

    Article  ADS  CAS  Google Scholar 

  39. K. H. Eckelmeyer, Report SAND-82-0524 (IAEA, USA, 1982).

  40. G. R. Johnson and J. M. Hoegfeldt, J. Eng. Mater. Technol. 105, 42 (1983).

    Article  Google Scholar 

  41. G. R. Johnson and J. M. Hoegfeldt, J. Eng. Mater. Technol. 105, 48 (1983).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 21-71-00102.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Ryabov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratov, R.V., Ryabov, P.N. & Kudryashov, N.A. On Features of Formation of Localized Shear Bands in Depleted Uranium. Phys. Atom. Nuclei 86, 2241–2250 (2023). https://doi.org/10.1134/S1063778823100319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823100319

Keywords:

Navigation