Skip to main content
Log in

Dynamic failure by adiabatic shear banding

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper addresses adiabatic shear localization from a different point of view. New results are reviewed which indicate that the process can be viewed as triggered by dynamic recrystallization instead of being the result of thermal softening as universally assumed. A simple dislocation dynamics model (modified ETMB) is used to reproduce the salient features of the physical observations, namely dynamic recrystallization in the strain-hardening phase with a minor temperature rise. The main parameters of the model are discussed from an experimental identification point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrade U, Meyers MA, Vecchio KS, Chokshi AH (1994) Dynamic recrystallization in high strain, high strain rate plastic deformation of copper. Acta Metall Mater 42: 3183–3195

    Article  CAS  Google Scholar 

  • Bai Y, Dodd B (1992) Shear localization: occurrence, theories, and applications. Pergamon, Oxford

    Google Scholar 

  • Bever M, Holt D, Titchener A (1973) The stored energy of cold work. Pergamon, London

    Google Scholar 

  • Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New York

    MATH  Google Scholar 

  • Duffy J, Chi Y (1992) On the measurement of local strain and temperature during the formation of adiabatic shear bands. Mater Sci Eng A 157: 195–210

    Article  Google Scholar 

  • Estrin Y, Toth L, Molinari A, Brechet Y (1998) A dislocation-based model for all hardening stages in large strain deformation. Acta Mater 46: 5509–5522

    Article  CAS  Google Scholar 

  • Estrin Y, Tóth LS, Bréchet Y, Kim HS (2006) Modelling of the evolution of dislocation cell misorientation under severe plastic deformation. Mater Sci Forum 503(504): 675–680

    Article  Google Scholar 

  • Farren WS, Taylor GI (1925) The heat developed during plastic extension of metals. Proc R Soc A 107: 422–451

    Article  ADS  Google Scholar 

  • Hartley KA, Duffy J, Hawley RH (1987) Measurement of the temperature profile during shear band formation in mild steels deforming at high-strain rates. J Mech Phys Solids 35: 283–301

    Article  ADS  Google Scholar 

  • Heidenreich RD, Shockley W (1948) Geometry of dislocations. In: Bristol conference on strength of solids. R Phys Soc Lond, Bristol

  • Hines JA, Vecchio KS (1997) Recrystallization kinetics within adiabatic shear bands. Acta Mater 45: 635–649

    Article  CAS  Google Scholar 

  • Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York

    Google Scholar 

  • Hodowany J, Ravichandran G, Rosakis AJ, Rosakis P (2000) Partition of plastic work into heat and stored energy in metals. Exp Mech 40: 113–123

    Article  CAS  Google Scholar 

  • Hosseini E, Kazeminezhad M (2009) ETMB model investigation of flow softening during severe plastic deformation. Comput Mater Sci 46: 902–905

    Article  CAS  Google Scholar 

  • Kocks UF (1976) Laws for work hardening and low-temperature creep. J Eng Mater Technol 98: 76–85

    CAS  Google Scholar 

  • Kubin LP (1993) Dislocation patterning. In: Mughrabi H (ed) Materials science and technology, vol 6. VCH Verlagsgesellschaft, Weinheim, pp 137–190

  • Liao SC, Duffy J (1998) Adiabatic shear band in a Ti-6Al-4V titanium alloy. J Mech Phys Solids 46: 2201–2231

    Article  CAS  ADS  Google Scholar 

  • Marchand A, Duffy J (1988) An experimental study of the formation process of adiabatic shear bands in a structural steel. J Mech Phys Solids 36: 251–283

    Article  ADS  Google Scholar 

  • Merzer AM (1982) Modelling of adiabatic shear band development from small imperfections. J Mech Phys Solids 30: 323–328

    Article  ADS  Google Scholar 

  • Meyers MA (1994) Dynamic behavior of materials. Wiley, New York

    Book  MATH  Google Scholar 

  • Meyers MA, LaSalvia JC, Nesterenko VF, Chen YJ, Kad BK (1996) Dynamic recrystallization in high strain rate deformation. In: The third international conference on recrystallization and related phenomena, pp 279–286

  • Meyers MA, Nesterenko VF, LaSalvia JC, Xu YB, Xue Q (2000) Observation and modeling of dynamic recrystallization in high-strain, high strain-rate deformation of metals. J Phys IV France Colloq C3(PR9): 51–56

    Google Scholar 

  • Nes E (1998) Modelling of work hardening and stress saturation in FCC metals. Process Mater Sci 41: 129–193

    Article  Google Scholar 

  • Orowan E (1948) Symposium on internal stresses in metals and alloys. Institute of Metals

  • Rittel D (1999) The conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mech Mater 31: 131–139

    Article  ADS  Google Scholar 

  • Rittel D, Landau P, Venkert A (2008) Dynamic recrystallization as a potential cause for adiabatic shear failure. Phys Rev Lett 101: 165501

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rittel D, Wang ZG (2008) Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys. Mech Mater 40: 629–635

    Article  Google Scholar 

  • Rittel D, Wang ZG, Merzer M (2006) Adiabatic shear failure and dynamic stored energy of cold work. Phys Rev Lett 96: 075502

    Article  CAS  PubMed  ADS  Google Scholar 

  • Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc R Soc Lond 143: 307–326

    Article  ADS  Google Scholar 

  • Tresca H (1879) Sur la fluidité et l’écoulement des corps solides. Annales du Conservatoire des Arts et Métiers 4

  • Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15: 22–32

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittel, D., Osovski, S. Dynamic failure by adiabatic shear banding. Int J Fract 162, 177–185 (2010). https://doi.org/10.1007/s10704-010-9475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9475-8

Keywords

Navigation