Skip to main content
Log in

Connection between the Dipole Polarizabilities of Charged and Neutral \(\pi\)-Mesons

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In light of the contribution of the states with isospin \(I=0\) in the difference of the amplitudes of the processes \(\gamma\gamma\to\pi^{+}\pi^{-}\) and \((\gamma+\gamma)\to(\pi^{0}+\pi^{0})\) being very small, the dispersion sum rules for the difference between the dipole polarizabilities of the charged and neutral pions are analyzed as a function of the \(\sigma\) meson’s parameters. Using the value of the chiral theory of perturbations for \((\alpha_{1}-\beta_{1})_{\pi^{0}}=-1.9\), \((\alpha_{1}-\beta_{1})_{\pi^{\pm}}=9.4{-}8.2\) is found for the \(\sigma\) meson parameter within the region \(m_{\sigma}=400{-}550\) MeV, \(\Gamma_{\sigma}=400{-}600\) MeV, \(\Gamma_{\sigma\to\gamma\gamma}=0{-}3\) keV. Estimated optimum value of decay width \(\sigma\to\gamma\gamma\) yields \(\Gamma_{\sigma\to\gamma\gamma}\lesssim 0.7\) keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. Yu. M. Antipov, V. A. Batarin, V. A. Bessubov, N. P. Budanov, Yu. P. Gorin, S. P. Denisov, I. V. Kotov, A. A. Lebedev, A. I. Petrukhin, S. A. Polovnikov, V. N. Roinishvili, D. A. Stoyanova, P. A. Kulinich, G. V. Mecel'macher, A. G. Ol'shevski, et al., Phys. Lett. B 121, 445 (1983);

    Article  ADS  Google Scholar 

  2. Yu. M. Antipov, V. A. Batarin, V. A. Bessubov, N. P. Budanov, Yu. P. Gorin, S. P. Denisov, I. V. Kotov, A. A. Lebedev, A. I. Petrukhin, S. A. Polovnikov, V. N. Roinishvili, D. A. Stoyanova, P. A. Kulinich, G. V. Mecel’macher, A. G. Ol’shevski, et al., Z. Phys. C 26, 495 (1985).

    Article  ADS  CAS  Google Scholar 

  3. J. Ahrens, V. M. Alexeev, J. R. M. Annand, H. J. Arends, R. Beck, G. Caselotti, S. N. Cherepnya, D. Drechsel, L. V. Fil’kov, K. Föhl, I. Giller, P. Grabmayr, T. Hehl, D. Hornidge, V. L. Kashevarov, M. Kotulla, et al., Eur. Phys. J. A 23, 113 (2005).

    Article  ADS  CAS  Google Scholar 

  4. J. Gasser, M. A. Ivanov, and M. E. Sainio, Nucl. Phys. B 745, 84 (2006).

    Article  ADS  Google Scholar 

  5. T. A. Aibergenov, P. S. Baranov, O. D. Beznisko, S. N. Cherepnija, L. V. Fil’kov, A. A. Nafikov, A. I. Osadchiy, V. G. Raevskiy, L. N. Shtarkov, and E. I. Tamm, Czech. J. Phys. B 36, 948 (1986).

    Article  ADS  Google Scholar 

  6. A. Guskov (COMPASS Collab.), Fizika B 17, 313 (2008).

    ADS  CAS  Google Scholar 

  7. G. Fäldt and U. Tengblad, Phys. Rev. C 76, 064607 (2007).

  8. G. Fäldt and U. Tengblad, Phys. Rev. C 79, 014607 (2009);

  9. G. Fäldt and U. Tengblad, Phys. Rev. C 79, 014607 (2009); Phys. Rev. C 87, 029903(E) (2013).

  10. T. Walcher, Prog. Part. Nucl. Phys. 61, 106 (2008).

    Article  ADS  CAS  Google Scholar 

  11. U. Amaldi, M. Jacob, and G. Matthiae, Ann. Rev. Nucl. Part. Sci. 26, 385 (1976).

    Article  ADS  CAS  Google Scholar 

  12. L. V. Fil’kov and V. L. Kashevarov, Phys. Part. Nucl. 48, 117, (2017)

    Article  Google Scholar 

  13. L. V. Fil’kov and V. L. Kashevarov, in Proceedings of the Conference NSTAR 2007, Bonn, Germany, September 5–8, 2007, p. 179; arXiv: 0802.0965 [nucl-th].

  14. L. V. Fil’kov and V. L. Kashevarov, in Proceedings of 6th International Workshop on Chiral Dynamics, July 6–10, 2009, Bern, Switzerland, PoS (CD09) 036; arXiv:0909.4849 [hep-ph].

  15. L. V. Fil’kov and V. L. Kashevarov, Eur. Phys. J. A 5, 285 (1999).

    Article  ADS  CAS  Google Scholar 

  16. L. V. Fil’kov and V. L. Kashevarov, Phys. Rev. C 72, 035211 (2005).

  17. L. V. Fil’kov and V. L. Kashevarov, Phys. Rev. C 73, 035210 (2006).

  18. D. Babusci, S. Bellucci, G. Giordano, G. Matone, A. M. Sandorfi, and M. A. Moinester, Phys. Lett. B 277, 158 (1992).

    Article  ADS  CAS  Google Scholar 

  19. J. F. Donoghue and B. R. Holstein, Phys. Rev. D 48, 137 (1993).

    Article  ADS  CAS  Google Scholar 

  20. A. E. Kaloshin and V. V. Serebryakov, Z. Phys. C 64, 689 (1994).

    Article  ADS  CAS  Google Scholar 

  21. R. Garcia-Martin and B. Moussallam, Eur. Phys. J. C 70, 155 (2010).

    Article  ADS  CAS  Google Scholar 

  22. U. Bürgi, Nucl. Phys. B 479, 392 (1997).

    Article  ADS  Google Scholar 

  23. C. Berger et al. (PLUTO Collab.), Z. Phys. C 26, 199 (1984).

    Article  ADS  CAS  Google Scholar 

  24. A. Courau et al. (DM1 Collab.), Nucl. Phys. B 271, 1 (1986).

    Article  ADS  Google Scholar 

  25. Z. Ajaltoni et al. (DM2 Collab.), Phys. Lett. B 194, 573 (1987).

    ADS  Google Scholar 

  26. J. Boyer et al. (Mark II Collab.), Phys. Rev. D 42, 1350 (1990).

    Article  ADS  CAS  Google Scholar 

  27. A. I. L’vov and V. A. Petrun’kin, Preprint No. 170 (Lebedev Phys. Inst., Moscow, 1977).

  28. L. V. Filkov, I. Guiaşu, and E. E. Radescu, Phys. Rev. D 26, 3146 (1982).

    Article  ADS  CAS  Google Scholar 

  29. H. A. Abarbanel and M. L. Goldberger, Phys. Rev. 165, 1594 (1968).

    Article  ADS  Google Scholar 

  30. I. Guiaşu and E. E. Radescu, Ann. Phys. (N.Y.) 122, 436 (1979).

    Article  ADS  Google Scholar 

  31. J. Beringer et al. (PDG Collab.), Phys. Rev. D 86, 010001 (2012).

  32. M. Zielinski, D. Berg, C. Chandlee, S. Cihangir, T. Ferbel, J. Huston, T. Jensen, F. Lobkowicz, T. Ohshima, P. Slattery, P. Thompson, B. Collick, S. Heppelmann, M. Marshak, E. Peterson, K. Ruddick, et al., Phys. Rev. Lett. 52, 1195 (1984).

    Article  ADS  CAS  Google Scholar 

  33. V. V. Anisovich, V. A. Nikonov, and A. V. Sarantsev, Phys. At. Nucl. 65, 1545 (2002).

    Article  CAS  Google Scholar 

  34. D. Morgan and M. R. Pennington, Z. Phys. C 48, 623 (1990).

    Article  ADS  CAS  Google Scholar 

  35. D. V. Bugg, A. V. Sarantsev, and B. S. Zou, Nucl. Phys. B 471, 59 (1990).

    Article  ADS  Google Scholar 

  36. A. I. L’vov and V. A. Petrun’kin, Sov. Phys.-Lebedev Inst. Rep., No.12 (1985).

  37. I. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006); hep-ph/0512364.

  38. I. Caprini, Phys. Rev. D 77, 114019 (2008); arXiv: 0804.3504.

  39. B. Moussallam, Eur. Phys. J. C 71, 1814 (2011).

    Article  ADS  Google Scholar 

  40. R. Kamiński, R. Garcia-Martin, J. R. Peláes, and J. Ruiz de Elvira, Nucl. Phys. Proc. Suppl. B 234, 253 (2012); arXiv: 1211.2617 [hep-ph].

  41. J. R. Peláez, J. Nebreda, G. Rios, and J. Ruiz de Elvira, Acta Phys. Polon. Supp. 6, 735 (2013); arXiv: 1304.5121 [hep-ph].

    Article  Google Scholar 

  42. M. Boglione and M. R. Pennington, Eur. Phys. J. C 9, 11 (1999).

    Article  ADS  CAS  Google Scholar 

  43. R. Garcia-Martin, R. Kamiński, J. R. Peláez, J. Ruiz de Elvira, and F. J. Ynduráin, Phys. Rev. D 83, 074004 (2011).

  44. A. Schenk, Nucl. Phys. B 363, 97 (1991).

    Article  ADS  Google Scholar 

  45. B. Ananthanarayan, G. Colangelo, J. Gasser, and H. Leutwyler, Phys. Rep. 353, 207 (2001).

    Article  ADS  CAS  Google Scholar 

  46. S. Bellucci, J. Gasser, and M. E. Sainio, Nucl. Phys. B 423, 80 (1994).

    Article  ADS  CAS  Google Scholar 

  47. S. Dubnička, A. Z. Dubničková, and M. Sečanský, Acta Phys. Slov. 55, 25 (2005).

    Google Scholar 

  48. N. N. Achasov and G. N. Shestakov, JETP Lett. 88, 295 (2008).

    Article  ADS  CAS  Google Scholar 

  49. M. Hoferichter, D. R. Philips, and C. Schat, Eur. Phys. J. C 71, 1743 (2011).

    Article  ADS  Google Scholar 

  50. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Springer, New York, 1979), p. 359.

    Book  Google Scholar 

  51. S. M. Flatté, Phys. Lett. B 63, 228 (1976).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would thanks Th. Walcher, V.L. Kashevarov, and A.I. L’vov for their helpful discussions.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Fil’kov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The contributions from vector and axial-vector mesons \((\rho,\omega,\phi,a_{1}\), and \(b_{1})\) to \(ImM_{++}(s,u=\mu^{2})\) were calculated using the expression

$$ImM_{++}^{(V)}(s,u=\mu^{2})$$
$${}=\mp 4g_{V}^{2}s\frac{\Gamma_{0}}{(m_{V}^{2}-s)^{2}+\Gamma_{0}^{2}},$$
(A1)

where \(m_{V}\) is the meson mass, sign ‘‘\({+}\)’’ corresponds to the contribution from \(a_{1}\) and \(b_{1}\) mesons and

$$g_{V}^{2}=6\pi\sqrt{\frac{m_{V}^{2}}{s}}\left(\frac{m_{V}}{m_{V}^{2}-\mu^{2}}\right)^{3}$$
$${}\times\Gamma_{V\to\gamma\pi}D_{1}(m_{V}^{2})/D_{1}(s),$$
(A2)
$$\Gamma_{0}=\left(\frac{q_{i}^{2}(s)}{q_{i}^{2}(m_{V}^{2})}\right)^{\frac{3}{2}}\frac{m_{V}^{2}}{\sqrt{s}}D_{1}(m_{V}^{2})/D_{1}(s)\Gamma_{V}.$$
(A3)

Here, \(D_{1}\) is associated with the centrifugal potential. It is equal to \(D_{1}=1+(q_{i}r)^{2}\) [48]; \(r=1\)fm is the effective radius of interaction; \(\Gamma_{V}\) and \(\Gamma_{V\to\gamma\pi}\) are the total decay width and the decay width for \(\gamma\pi\) of these mesons. Momenta \(q_{i}^{2}\) for \((\rho,\,\omega,\,\phi,\,a_{1}\), and \(b_{1})\) mesons are equal to \((s-4\mu^{2})/4\), \((s-9\mu^{2})/4\), \((s-4m_{k}^{2})/4\), \((s-(m_{\rho}+\mu)^{2}/)4\), and \((s-16\mu^{2})/4\), respectively.

Appendix B

The amplitude of the contribution from a scalar meson to the process \(\gamma\gamma\to\pi\pi\) can be written as

$$T=\frac{g_{s}}{\sqrt{t}-M_{s}-i\frac{1}{2}\Gamma_{s}}.$$
(B1)

It is then easy to show that the imaginary part of amplitude \(ImM_{++}^{\sigma}(t)\) of the \(\sigma\) meson contributions to the considered process can be presented as

$$ImM_{++}^{\sigma}(t)=\dfrac{g_{\sigma}(\sqrt{t}+M_{s})\Gamma_{0}^{\sigma}(t)}{(t-M_{\sigma}^{2})^{2}+(\Gamma_{0}^{\sigma}(t))^{2}},$$
(B2)

where

$$g_{\sigma}=\frac{8\pi}{t}\left[\frac{2}{3}\dfrac{M_{\sigma}\Gamma_{\gamma\gamma}\Gamma_{\sigma}}{\sqrt{M_{\sigma}^{2}-4\mu^{2}}}\right]^{1/2},$$
(B3)
$$\Gamma_{0}^{\sigma}=\dfrac{M_{\sigma}(\sqrt{t}+M_{\sigma})}{2\sqrt{t}}\left(\dfrac{t-4\mu^{2}}{M_{\sigma}^{2}-4\mu^{2}}\right)^{1/2}\Gamma_{\sigma}.$$
(B4)

Expressions (B2)–(B4) can be very useful in describing scaler mesons with large decay widths.

Since the two \(K\) mesons make a large contribution to the decay width of the \(f_{0}(980)\) meson and the threshold of the reaction \(\gamma\gamma\to K\overline{K}\) is very close to the mass of the \(f_{0}(980)\) meson, we consider Flatté’s expression [49] for the \(f_{0}(980)\) meson’s contribution to the process \(\gamma\gamma\to\pi\pi\).

For \(t>4m_{k}^{2}\):

$$ImM_{++}^{f_{0}}=g_{f_{0}}\frac{\Gamma_{0_{f_{0}}}}{(m_{f_{0}}^{2}-t)^{2}+\Gamma_{0_{f_{0}}}^{2}},$$
(B5)

where

$$\Gamma_{0_{f_{0}}}=\Bigg{[}\Gamma_{f_{0}\to\pi\pi}\left(\frac{t-4\mu^{2}}{m_{f_{0}}^{2}-4\mu^{2}}\right)^{1/2}$$
$${}+\Gamma_{f_{0}\to kk}\left(\frac{t-4m_{k}^{2}}{4m_{k}^{2}-m_{f_{0}}^{2}}\right)^{1/2}\Bigg{]}m_{f_{0}}.$$
(B6)

For \(t<4m_{k}^{2}\):

$$ImM_{++}=g_{f_{0}}\Gamma_{0_{f_{0}}}\Bigg{(}\Bigg{[}m_{f_{0}}^{2}-t$$
$${}-\left(\dfrac{4m_{k}^{2}-t}{4m_{k}^{2}-m_{f_{0}}^{2}}\right)^{1/2}m_{f_{0}}\Gamma_{f_{0}\to kk}\Bigg{]}^{2}$$
$${}+\Gamma_{0_{f_{0}}}^{2}\Bigg{)}^{-1},$$
(B7)
$$\Gamma_{0_{f_{0}}}=\Gamma_{f_{0}\to\pi\pi}m_{f_{0}}\left(\frac{t-4\mu^{2}}{m_{f_{0}}^{2}-4\mu^{2}}\right)^{1/2}.$$
(B8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fil’kov, L.V. Connection between the Dipole Polarizabilities of Charged and Neutral \(\pi\)-Mesons. Phys. Atom. Nuclei 86, 1241–1248 (2023). https://doi.org/10.1134/S106377882306008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882306008X

Navigation