Skip to main content
Log in

On the Importance of Inelastic Interactions in Direct Dark Matter Searches

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The approach proposed earlier for describing the scattering of weakly interacting nonrelativistic massive neutral particles off nuclei is used as the basis to derive explicit expressions for the event counting rate expected in experiments aimed at directly detecting dark matter (DM) particles. These expressions make it possible to estimate the rates in question with allowance for both elastic (coherent) and inelastic (incoherent) channels of DM particle interaction with a target nucleus. Within this approach, the effect of a nonzero excitation energy of the nucleus involved is taken into account for the first time in calculating the contribution of inelastic processes. A correlation between the excitation energy and admissible values of the kinetic recoil energy of the excited nucleus constrains substantially the possibility of detection of the inelastic channel with some nuclei. In addition to the standard model of the DM distribution in the Milky Way Galaxy, the effect of some other models that allow significantly higher velocities of DM particles is considered. A smooth transition from the dominance of the elastic channel of the DM particle–nucleus interaction to the dominance of its inelastic channel occurs as the nuclear recoil energy \(T_{A}\) grows. If the DM detector used is tuned to detecting elastic-scattering events exclusively, then it cannot detect anything in the case where the nuclear recoil energy turns out to be below the the detection threshold. As \(T_{A}\) grows, such a detector loses the ability to see anything, since elastic processes quickly become nonexistent. Radiation associated with the deexcitation of the nucleus becomes the only possible signature of the interaction that occurred. In the case of a spin-independent interaction, the inelastic contribution becomes dominant rather quickly as \(T_{A}\) grows, while the differential event counting rate decreases insignificantly. If a DM particle interacts with nucleons via a spin-dependent coupling exclusively, detectors traditionally set up to detect an elastic spin-dependent DM signal will be unable to to see anything since the signal entirely goes through the inelastic channel. It looks like the sought interactions of DM particles may have a sizable intensity, but the instrument is unable to detect them.

Therefore, experiments aimed at directly detecting DM particles should be planned in such a way that it would be possible to detect simultaneously two signals—that of the recoil energy of the nucleus involved and that of gamma rays having a specific energy and carrying away its excitation. A experiment in this implementation will furnish complete information about the DM interaction that occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. One needs precision low-background and low-threshold detectors and a protection from a multitude of various background processes. The interaction probability is low, and so is the event counting rate. Therefore, events should be accumulated for years. The uncertainty in the distribution of DM particles is large both in the Milky Way Galaxy and in the immediate vicinity of the Earth. The occurrence of the interaction of DM particles with one target type does not guarantee their interaction with another type if for no other reason than the difference in the nucleon and spin composition.

  2. Indeed, we have \(T_{A^{*}}^{\textrm{max}}=T_{\chi}^{\textrm{max}}\mu_{A}-\dfrac{2r\Delta\varepsilon_{mn}}{1+r}=T_{\chi}^{\textrm{max}}\mu_{A}\Big{(}1-\dfrac{\Delta\varepsilon_{mn}}{T_{\chi}^{\textrm{max}}}\dfrac{(r+1)}{2}\Big{)}\simeq T_{\chi}^{\textrm{max}}\mu_{A}\), since \(\mu_{A}=\dfrac{4r}{(1+r)^{2}}\)

  3. Here, there is no the counting rate for coherent events, \(R_{\text{coh}}\), in the case of rather heavy nuclei.

  4. This is so because \(\dfrac{m_{\chi}c^{2}}{2}\Big{(}\dfrac{v_{0}}{c}\Big{)}^{2}=\dfrac{1}{2}\Big{[}\dfrac{m_{\chi}}{1\text{ GeV}}\Big{]}\Big{[}\dfrac{220\text{ km/s}}{300\times 10^{3}\text{ km/s}}\Big{]}^{2}\times 10^{6}\text{ keV}\simeq 0.269\Big{[}\dfrac{rm_{A}}{1\text{ GeV}}\Big{]}\text{ keV}\).

  5. If \(\omega>1\), then, at the above values of \(m_{A}\), \(m_{\chi}\), \(\eta\), and \(\Delta\varepsilon_{mn}\), an incoherent process is impossible.

  6. As a matter of fact, this distinction stems from a smaller value of the ratio \(\dfrac{m_{A}}{\Delta\varepsilon_{mn}}\) for \({}^{19}\)F and \({}^{69}\)Ga than for \({}^{131}\)Xe and \({}^{73}\)Ge, respectively, despite a relatively small difference in the excitation energy of the first level.

  7. this ‘‘classic’’ inelastic approach should not be confused with ‘‘inelasticity’’ associated with the transition of a \(\chi_{1}\) lepton (dark matter) incident to the nucleus to a more massive \(\chi_{2}\) lepton (also belonging to the dark sector). Concurrently, it is assumed that the nucleus involved undergoes no change—that is, it interacts coherently (see, for example, [23, 24, 35, 38, 40, 43, 44, 108]).

  8. the relativistic version of this description was considered in [98].

REFERENCES

  1. T. Bringmann and C. Weniger, Phys. Dark Univ. 1, 194 (2012); arXiv: 1208.5481.

  2. Y. Sofue, arXiv: 1504.05368.

  3. R. Feldmann and D. Spolyar, Mon. Not. R. Astron. Soc. 446, 1000 (2015); arXiv: 1310.2243.

    Article  ADS  CAS  Google Scholar 

  4. M. Madhavacheril et al., Phys. Rev. Lett. 114, 151302 (2015); arXiv: 1411.7999.

  5. J. L. Feng, Ann. Rev. Astron. Astrophys. 48, 495 (2010); arXiv: 1003.0904.

    Article  ADS  CAS  Google Scholar 

  6. B. Famaey, arXiv: 1501.01788.

  7. S. Cebrián, J. Phys.: Conf. Ser. 2502, 012004 (2023); arXiv: 2205.06833.

  8. R. Bernabei et al., Prog. Part. Nucl. Phys. 114, 103810 (2020).

  9. R. Bernabei, Physics 15, 10 (2014); arXiv: 1412.6524.

    Google Scholar 

  10. N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009); arXiv: 0810.0713.

  11. B. Hoeneisen, arXiv: 1502.07375.

  12. M. Livio and J. Silk, Nature (London, U.K.) 507, 29 (2014); arXiv: 1404.2591.

    Article  ADS  Google Scholar 

  13. R. Bernabei et al., Int. J. Mod. Phys. A 37, 2240015 (2022).

  14. T. R. Slatyer, SciPost Phys. Lect. Notes 53, 1 (2022); arXiv: 2109.02696.

  15. J. Cooley, SciPost Phys. Lect. Notes 55, 1 (2022); arXiv: 2110.02359.

  16. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005); hep-ph/0404175.

    Article  ADS  CAS  Google Scholar 

  17. A. K. Drukier, K. Freese, and D. N. Spergel, Phys. Rev. D 33, 3495 (1986).

    Article  ADS  CAS  Google Scholar 

  18. G. B. Gelmini, arXiv: 1502.01320.

  19. V. A. Bednyakov, Phys. Part. Nucl. 47, 711 (2016); arXiv: 1505.04380.

    Article  Google Scholar 

  20. C. Boehm, D. G. Cerdeo, P. A. N. Machado, A. Campo, D. Olivares, and E. Reid, J. Cosmol. Astropart. Phys. 1901, 043 (2019); arXiv: 1809.06385.

  21. D. K. Papoulias, R. Sahu, T. S. Kosmas, V. K. B. Kota, and B. Nayak, Adv. High Energy Phys. 2018, 6031362 (2018); arXiv: 1804.11319.

  22. W. H. Dai et al., arXiv: 2209.00861.

  23. M. J. Zurowski, E. Barberio, and G. Busoni, J. Cosmol. Astropart. Phys. 12, 014 (2020); arXiv: 2005.10404.

  24. A. Aboubrahim, L. Althueser, M. Klasen, P. Nath, and C. Weinheimer, arXiv: 2207.08621.

  25. F. Kahlhoefer, F. Reindl, K. Schtsdffner, K. Schmidt-Hoberg, and S. Wild, J. Cosmol. Astropart. Phys. 05, 074 (2018); arXiv: 1802.10175.

  26. V. Bednyakov, Phys. Part. Nucl. 44, 220 (2013); arXiv: 1207.2899.

    Article  CAS  Google Scholar 

  27. K. Freese, J. A. Frieman, and A. Gould, Phys. Rev. D 37, 3388 (1988).

    Article  ADS  CAS  Google Scholar 

  28. N. Spooner, J. Phys. Soc. Jpn. 76, 111016 (2007); arXiv: 0705.3345.

  29. V. A. Bednyakov, arXiv: 2003.09422.

  30. G. E. Lawrence, A. R. Duffy, C. A. Blake, and P. F. Hopkins, arXiv: 2207.07644.

  31. P. Cushman, C. Galbiati, D. McKinsey, H. Robertson, T. Tait, et al., arXiv: 1310.8327.

  32. T. Saab, arXiv: 1203.2566.

  33. N. Hurtado, H. Mir, I. M. Shoemaker, E. Welch, and J. Wyenberg, Phys. Rev. D 102, 015006 (2020); arXiv: 2005.13384.

  34. P. Du, D. Egana-Ugrinovic, R. Essig, and M. Sholapurkar, Phys. Rev. X 12, 011009 (2022); arXiv: 2011.13939.

  35. M. Baryakhtar, A. Berlin, H. Liu, and N. Weiner, J. High Energy Phys. 2206, 047 (2022); arXiv: 2006.13918.

  36. A. Majumdar, D. K. Papoulias, and R. Srivastava, arXiv: 2112.03309.

  37. G. Afek, D. Carney, and D. C. Moore, Phys. Rev. Lett. 128, 101301 (2022); arXiv: 2111.03597.

  38. G. F. Giudice, D. Kim, J.-C. Park, and S. Shin, Phys. Lett. B 780, 543 (2018); arXiv: 1712.07126.

    Article  ADS  CAS  Google Scholar 

  39. J.-W. Wang, A. Granelli, and P. Ullio, Phys. Rev. Lett. 128, 221104 (2022); arXiv: 2111.13644.

  40. J.-C. Feng, X.-W. Kang, C.-T. Lu, Y.-L. S. Tsai, and F.-S. Zhang, J. High Energy Phys. 2204, 080 (2022); arXiv:2110.08863.

  41. T. Emken, J. Frerick, S. Heeba, and F. Kahlhoefer, Phys. Rev. D 105, 055023 (2022); arXiv: 2112.06930.

  42. A. Granelli, P. Ullio, and J.-W. Wang, arXiv: 2202.07598.

  43. A. Filimonova, S. Junius, L. Lopez Honorez, and S. Westhoff, J. High Energy Phys. 2206, 048 (2022); arXiv: 2201.08409.

  44. N. F. Bell, J. B. Dent, B. Dutta, J. Kumar, and J. L. Newstead, arXiv: 2208.08020.

  45. S. Tsuchida, N. Kanda, Y. Itoh, and M. Mori, Phys. Rev. D 101, 023005 (2020); arXiv: 1909.00654.

  46. A. Coskuner, T. Trickle, Z. Zhang, and K. M. Zurek, Phys. Rev. D 105, 015010 (2022); arXiv: 2102.09567.

  47. E. E. Boos, V. E. Bunichev, and S. S. Trykov, arXiv: 2205.07364.

  48. V. V. Flambaum, B. T. McAllister, I. B. Samsonov, and M. E. Tobar, arXiv: 2207.14437.

  49. X. Fan, G. Gabrielse, P. W. Graham, R. Harnik, T. G. Myers, H. Ramani, B. A. D. Sukra, S. S. Y. Wong, and Y. Xiao, arXiv: 2208.06519.

  50. C. Blanco, R. Essig, M. Fernandez-Serra, H. Ramani, and O. Slone, arXiv: 2208.05967.

  51. J. Billard, M. Pyle, S. Rajendran, and H. Ramani, arXiv: 2208.05485.

  52. H. M. Araújo et al., arXiv: 2207.08284.

  53. D. Bardhan, S. Bhowmick, D. Ghosh, A. Guha, and D. Sachdeva, arXiv: 2208.09405.

  54. G. Krnjaic et al., arXiv: 2207.00597.

  55. A. Fuss, M. Kaznacheeva, F. Reindl, and F. Wagner, arXiv: 2202.05097

  56. E. Armengaud et al., arXiv: 2203.03993.

  57. H. Lattaud et al., PoS V.EPS-HEP2021, 153 (2022).

  58. E. Armengaud et al., Phys. Rev. D 99, 082003 (2019); arXiv: 1901.03588.

  59. E. Aprile et al., Phys. Rev. Lett. 123, 251801 (2019); arXiv: 1907.11485.

  60. C. Cheng et al., Phys. Rev. Lett. 126, 211803 (2021); arXiv: 2101.07479.

  61. D. Kim and K. T. Matchev, Phys. Rev. D 98, 055018 (2018); arXiv: 1712.07620.

  62. J. Berger et al., arXiv: 2207.02882.

  63. T. Bringmann and M. Pospelov, Phys. Rev. Lett. 122, 171801 (2019).

  64. Z.-H. Lei, J. Tang, and B.-L. Zhang, Chin. Phys. C 46, 085103 (2022); arXiv: 2008.07116.

  65. C. Xia, Y.-H. Xu, and Y.-F. Zhou, Nucl. Phys. B 969, 115470 (2021); arXiv: 2009.00353.

  66. C. V. Cappiello and J. F. Beacom, Phys. Rev. D 100, 103011 (2019); arXiv: 1906.11283; Phys. Rev. D 104, 069901(E) (2021).

  67. Y. Ema, F. Sala, and R. Sato, Phys. Rev. Lett. 122, 181802 (2019); arXiv: 1811.00520.

  68. J. B. Dent, B. Dutta, J. L. Newstead, and I. M. Shoemaker, Phys. Rev. D 101, 116007 (2020); arXiv: 1907.03782.

  69. X. Cui et al., Phys. Rev. Lett. 128, 171801 (2022); arXiv: 2112.08957.

  70. P. Gondolo and J. Silk, Phys. Rev. Lett. 83, 1719 (1999); arXiv: astro-ph/9906391.

    Article  ADS  CAS  Google Scholar 

  71. K. Agashe, Y. Cui, L. Necib, and J. Thaler, J. Cosmol. Astropart. Phys. 10, 062 (2014); arXiv: 1405.7370.

  72. C. Kouvaris, Phys. Rev. D 92, 075001 (2015); arXiv: 1506.04316.

  73. H. An, M. Pospelov, J. Pradler, and A. Ritz, Phys. Rev. Lett. 120, 141801 (2018); arXiv: 1708.03642; Phys. Rev. Lett. 121, 259903(E) (2018).

  74. T. Emken, C. Kouvaris, and N. G. Nielsen, Phys. Rev. D 97, 063007 (2018); arXiv: 1709.06573.

  75. C. Xia, Y.-H. Xu, and Y.-F. Zhou, arXiv: 2206.11454.

  76. R. Xu et al., arXiv: 2201.01704.

  77. S. Bhowmick, D. Ghosh, and D. Sachdeva, arXiv: 2301.00209.

  78. W. Wang, L. Wu, J. M. Yang, H. Zhou, and B. Zhu, J. High Energy Phys. 2012, 072 (2020); arXiv: 1912.09904; J. High Energy Phys. 2102, 052(E) (2021).

  79. G. Elor, R. McGehee, and A. Pierce, arXiv: 2112.03920.

  80. P.-K. Hu, A. Kusenko, and V. Takhistov, Phys. Lett. B 768, 18 (2017); arXiv: 1611.04599.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  81. L. Singh et al., Phys. Rev. D 99, 032009 (2019); arXiv: 1808.02719.

  82. Y. Cui, D. E. Morrissey, D. Poland, and L. Randall, J. High Energy Phys. 0905, 076 (2009); arXiv: 0901.0557.

  83. S. Kang, S. Scopel, and G. Tomar, Phys. Rev. D 99, 103019 (2019); arXiv: 1902.09121.

  84. N. F. Bell, J. B. Dent, B. Dutta, S. Ghosh, J. Kumar, J. L. Newstead, and I. M. Shoemaker, Phys. Rev. D 104, 076020 (2021); arXiv: 2108.00583.

  85. J. L. Feng, arXiv: 2212.02479.

  86. V. A. Bednyakov and D. V. Naumov, Phys. Rev. D 98, 053004 (2018); arXiv: 1806.08768.

  87. V. A. Bednyakov and D. V. Naumov, Phys. Part. Nucl. Lett. 16, 638 (2019); arXiv: 1904.03119.

    Article  CAS  Google Scholar 

  88. V. A. Bednyakov and D. V. Naumov, Phys. Part. Nucl. 52, 39 (2021); arXiv: 2021.0000.

  89. V. A. Bednyakov, D. V. Naumov, and I. V. Titkova, Phys. At. Nucl. 84, 314 (2021).

    Article  CAS  Google Scholar 

  90. V. A. Bednyakov, Phys. Part. Nucl. 54, 273 (2023); arXiv: 2023.11201.

  91. J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87 (1996).

    Article  ADS  Google Scholar 

  92. V. A. Bednyakov, Phys. Part. Nucl. 52, 847 (2021).

    Article  Google Scholar 

  93. J. D. Vergados, J. Phys. G 22, 253 (1996); hep-ph/9504320.

    Article  ADS  CAS  Google Scholar 

  94. L. Baudis, Phys. Dark Univ. 1, 94 (2012); arXiv: 1211.7222.

  95. M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018).

  96. N. W. Evans, C. A. J. O’Hare, and C. McCabe, Phys. Rev. D 99, 023012 (2019); arXiv: 1810.11468.

  97. C. A. J. O’Hare, C. McCabe, N. W. Evans, G. Myeong, and V. Belokurov, Phys. Rev. D 98, 103006 (2018); arXiv: 1807.09004.

  98. V. A. Bednyakov, Phys. Part. Nucl. 54, 803 (2023); arXiv: 2303.10943.

    Article  CAS  Google Scholar 

  99. R. Sahu, D. K. Papoulias, V. K. B. Kota, and T. S. Kosmas, Phys. Rev. C 102, 035501 (2020); arXiv: 2004.04055.

  100. R. Sahu, V. K. B. Kota, and T. S. Kosmas, Particles 4, 75 (2021); arXiv: 2009.10522.

  101. R. H. Helm, Phys. Rev. 104, 1466 (1956).

    Article  ADS  CAS  Google Scholar 

  102. P. F. Smith and J. D. Lewin, Phys. Rep. 187, 203 (1990).

    Article  ADS  Google Scholar 

  103. V. Bednyakov and H. Klapdor-Kleingrothaus, Phys. Part. Nucl. 40, 583 (2009); arXiv: 0806.3917.

    Article  CAS  Google Scholar 

  104. R. Bernabei et al., arXiv: 2209.00882.

  105. V. A. Bednyakov, arXiv: 2305.02050.

  106. C. McCabe, J. Cosmol. Astropart. Phys. 05, 033 (2016); arXiv: 1512.00460.

  107. L. Baudis, G. Kessler, P. Klos, R. F. Lang, J. Menéndez, S. Reichard, and A. Schwenk, Phys. Rev. D 88, 115014 (2013); arXiv: 1309.0825.

  108. E. Aprile et al., Phys. Rev. D 103, 063028 (2021); arXiv: 2011.10431.

  109. T. W. Donnelly and J. D. Walecka, Ann. Rev. Nucl. Part. Sci. 25, 329 (1975).

    Article  ADS  CAS  Google Scholar 

  110. B. Dutta, W.-C. Huang, J. L. Newstead, and V. Pandey, arXiv: 2206.08590.

Download references

ACKNOWLEDGMENTS

I am grateful to D.V. Naumov, E.A. Yakushev, N.A. Rusakovich, and I.V. Titkova for discussions, enlightening comments, and help in the preparation of the manuscript for publication.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bednyakov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednyakov, V.A. On the Importance of Inelastic Interactions in Direct Dark Matter Searches. Phys. Atom. Nuclei 86, 1196–1231 (2023). https://doi.org/10.1134/S1063778823060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823060078

Navigation