Skip to main content
Log in

Neutrino Electromagnetic Properties in Elastic Neutrino–Proton Scattering

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The contribution of neutrino electromagnetic properties to elastic neutrino–proton scattering is considered in detail. The neutrino electromagnetic properties are introduced via the charge, magnetic, electric, and anapole form factors in the basis of neutrino mass eigenstates. The effects of mixing of three neutrino states are taken into account along with effects of the change in the flavor of a neutrino that moves from the source to the detector. The weak neutral and electromagnetic nucleon form factors are also taken into account. The differential cross section calculated numerically for elastic neutrino–proton scattering obtained with allowance for the neutrino charge radius and magnetic moment are compared with the predictions of the Standard Model for reactor and accelerator neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015).

    Article  ADS  Google Scholar 

  2. C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I. Studenikin, and S. Zhou, Ann. Phys. (Berlin) 528, 198 (2016).

    Article  ADS  Google Scholar 

  3. A. I. Studenikin and K. A. Kouzakov, Mosc. Univ. Phys. Bull. 75, 379 (2020).

    Article  ADS  Google Scholar 

  4. J. Bernabéu, L. G. Cabral-Rosetti, J. Papavassiliou, and J. Vidal, Phys. Rev. D 62, 113012 (2000).

    Article  ADS  Google Scholar 

  5. J. Bernabéu, J. Papavassiliou, and J. Vidal, Phys. Rev. Lett. 89, 101802 (2002).

    Article  ADS  Google Scholar 

  6. J. Bernabéu, J. Papavassiliou, and J. Vidal, Nucl. Phys. B 680, 450 (2004).

    Article  ADS  Google Scholar 

  7. K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980).

    Article  ADS  Google Scholar 

  8. L. Alvarez Ruso et al., arXiv: 2203.09030 [hep-ph].

  9. Q. Chen, Theses and Dissertations–Physics and Astronomy (Univ. of Kentucky, 2021), p. 86.

    Google Scholar 

  10. O. Tomalak, P. Machado, V. Pandey, and R. Plestid, J. High Energy Phys. 2021, 97 (2021).

    Article  Google Scholar 

  11. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, arXiv: 2105.07939.

  12. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, Nat. Commun. 13, 5286 (2022).

    Article  ADS  Google Scholar 

  13. R. S. Sufian, K.-F. Liu, and D. G. Richards, J. High Energy Phys. 2020, 1 (2020).

    Article  Google Scholar 

  14. G. D. Megias, S. Bolognesi, M. B. Barbaro, and E. Tomasi-Gustafsson, Phys. Rev. C 101, 025501 (2020).

    Article  ADS  Google Scholar 

  15. X. Zhang, T. J. Hobbs, and G. A. Miller, Phys. Rev. D 102, 074026 (2020).

    Article  ADS  Google Scholar 

  16. J. Liang and K.-F. Liu, arXiv: 2008.12389 [hep-lat].

  17. D. Z. Freedman, Phys. Rev. D 9, 1389 (1974).

    Article  ADS  Google Scholar 

  18. D. Akimov et al., Science (Washington, DC, U. S.) 357, 1123 (2017).

    Article  Google Scholar 

  19. J. Yang, J. A. Hernandez, and J. Piekarewicz, Phys. Rev. C 100, 054301 (2019).

    Article  ADS  Google Scholar 

  20. C. G. Payne, S. Bacca, G. Hagen, W. G. Jiang, and T. Papenbrock, Phys. Rev. C 100, 061304(R) (2019).

  21. M. Hoferichter, J. Menendez, and A. Schwenk, Phys. Rev. D 102, 074018 (2020).

    Article  ADS  Google Scholar 

  22. M. Cadeddu, C. Giunti, K. A. Kouzakov, Y. F. Li, A. I. Studenikin, and Y. Y. Zhang, Phys. Rev. D 98, 113010 (2018).

    Article  ADS  Google Scholar 

  23. O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tórtola, and J. W. F. Valle, J. High Energy Phys. 2020, 130 (2020).

    Article  Google Scholar 

  24. M. Cadeddu, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, and Y. Y. Zhang, Phys. Rev. D 102, 015030 (2020).

    Article  ADS  Google Scholar 

  25. H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, R. Wink, and CONUS Collab., Eur. Phys. J. C 82, 813 (2022).

    Article  ADS  Google Scholar 

  26. M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, C. A. Ternes, and Y. Y. Zhang, J. High Energy Phys. 2022, 164 (2022).

    Article  Google Scholar 

  27. F. An et al., J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016).

    Article  ADS  Google Scholar 

  28. M. Nowakowski, E. A. Paschos, and J. M. Rodriguez, Eur. J. Phys. 26, 545 (2005).

    Article  Google Scholar 

  29. Particle Data Group (R. L. Workman et al.), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

  30. E. Aprile et al., Phys. Rev. D 102, 072004 (2020).

    Article  ADS  Google Scholar 

  31. A. I. Ternov, JETP Lett. 104, 75 (2016).

    Article  ADS  Google Scholar 

  32. A. I. Ternov, Phys. Rev. D 94, 093008 (2016).

    Article  ADS  Google Scholar 

  33. K. S. Babu and R. N. Mohapatra, Phys. Rev. D 41, 271 (1990).

    Article  ADS  Google Scholar 

  34. G. G. Raffelt, Phys. Rep. 320, 319 (1999).

    Article  ADS  Google Scholar 

  35. W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001).

    Article  ADS  Google Scholar 

  36. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  37. W. M. Alberico, S. M. Bilenky, C. Giunti, and K. M. Graczyk, Phys. Rev. C 79, 065204 (2009).

    Article  ADS  Google Scholar 

  38. D. K. Papoulias and T. S. Kosmas, Adv. High Energy Phys. 2016, 1490860 (2016).

    Article  Google Scholar 

  39. G. T. Garvey, W. C. Louis, and D. H. White, Phys. Rev. C 48, 761 (1993).

    Article  ADS  Google Scholar 

  40. K. A. Kouzakov and A. I. Studenikin, Phys. Rev. D 95, 055013 (2017).

    Article  ADS  Google Scholar 

  41. MicroBooNE Collab. (P. Abratenko et al.), Phys. Rev. Lett. 128, 151801 (2022).

    ADS  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation (project no. 22-22-00384). F.M. Lazarev gratefully acknowledges the support of National Centre for Physics and Mathematics (Sarov, Russia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Kouzakov, F. M. Lazarev or A. I. Studenikin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouzakov, K.A., Lazarev, F.M. & Studenikin, A.I. Neutrino Electromagnetic Properties in Elastic Neutrino–Proton Scattering. Phys. Atom. Nuclei 86, 257–265 (2023). https://doi.org/10.1134/S1063778823030122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823030122

Navigation