Skip to main content

Advertisement

Log in

Unraveling the flux-averaged neutrino–nucleus cross section

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The interpretation of the nuclear cross sections measured using accelerator neutrino beams involves prohibitive difficulties, arising primarily from the average over the incoming neutrino flux. The broad energy distribution of the beam particles severely hampers the determination of the energy transfer to the nuclear target, the knowledge of which is needed to pin down the dominant reaction mechanism. Overcoming this problem requires the development of a theoretical approach suitable to describe neutrino interactions at energies ranging from hundreds of MeV to few GeV. In this paper, it is argued that the approach based on factorisation of the nuclear cross section and the Green’s function formalism provides a consistent framework for the calculation of neutrino–nucleus interactions in both the quasi-elastic and inelastic channels. The near-degeneracy between theoretical models based on different assumptions, and the use of electron scattering data to advance the understanding of neutrino-nucleus cross sections are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Theoretical studies of the momentum distribution sum rule in isospin-symmetric nuclear matter strongly suggest that the contribution of \((A-1)\)-nucleon states involving more than one particle excited to the continuum by ground-state correlations is negligibly small [34].

  2. In the LFG model the nucleon Fermi momenta of isospin-symmetric nuclei depend on position through \(k_F(r) = [3 \pi ^2 \varrho _A(r)]^{1/3}\), \(\varrho _A(r)\) being the density distribution normalised to the nuclear charge Z = A/2.

  3. Here we use standard spectroscopic notation, according to which S and P states correspond to orbital angular momentum \(\ell = 0\) and 1, respectively.

  4. Note that this expression applies to isospin-symmetric targets, in which the neutron and proton spectral functions can be assumed to be identical.

  5. For the sake of simplicity, here, and in what follows, the contributions of s and c quarks are not taken into account.

References

  1. M. Yourcenar, Memoirs of Hadrian (Farrar, Straus & Giroux, New York, 2015)

    Google Scholar 

  2. M. Sajjad Athar, S.K. Singh, The Physics of Neutrino Interactions (Cambridge University Press, Cambridge, 2020)

    Book  Google Scholar 

  3. Proceeedings of the First Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region, Eds. J.G. Morfin, M. Sakuda, and Y. Suzuky, Nucl. Phys. B (Proc. Suppl.), 112 (2002)

  4. A.A. Aguilar-Arevalo et al., MiniBooNE Collaboration. Phys. Rev. D 81, 092005 (2010)

    Article  ADS  Google Scholar 

  5. P.A. Rodrigues et al., MINER\(\nu \)A Collaboration. Phys. Rev. Lett. 116, 071802 (2016)

    Article  ADS  Google Scholar 

  6. A. Filkins et al., MINER\(\nu \)A Collaboration. Phys. Rev. D 101, 112007 (2020)

    Article  ADS  Google Scholar 

  7. D. Coplowe et al., MINER\(\nu \)A Collaboration. Phys. Rev. D 102, 072007 (2020)

    Article  ADS  Google Scholar 

  8. M.F. Carneiro et al., MINER\(\nu \)A Collaboration. Phys. Rev. Lett. 124, 121801 (2020)

    Article  ADS  Google Scholar 

  9. K. Abe et al., T2K Collaboration. Phys. Rev. D 93, 112012 (2016)

    Article  ADS  Google Scholar 

  10. K. Abe et al., Ibidem 101, 112004 (2020)

    Google Scholar 

  11. P. Abratenko et al., MicroBooNE Collaboration. Phys. Rev. Lett. 123, 131801 (2019)

    Article  ADS  Google Scholar 

  12. P. Abratenko et al., ibidem 125, 201803 (2020)

    Article  ADS  Google Scholar 

  13. P. Abratenko et al., Phys. Rev. D 99, 091102 (2019)

    Article  ADS  Google Scholar 

  14. P. Abratenko et al., ibidem 102, 112013 (2020)

    Google Scholar 

  15. M.A. Acero et al., NO\(\nu \)A Collaboration. Phys. Rev. D 102, 012004 (2020)

    Article  ADS  Google Scholar 

  16. https://indico.phys.vt.edu/event/44/overview

  17. O. Benhar, N. Farina, H. Nakamura, M. Sakuda, R. Seki, Phys. Rev. D 72, 053005 (2005)

    Article  ADS  Google Scholar 

  18. O. Benhar, P. Coletti, D. Meloni, Phys. Rev. Lett. 105, 132301 (2010)

    Article  ADS  Google Scholar 

  19. A. Ankowski, O. Benhar, M. Sakuda, Phys. Rev. D 91, 033005 (2015)

    Article  ADS  Google Scholar 

  20. N. Rocco, A. Lovato, O. Benhar, Phys. Rev. Lett. 116, 192501 (2016)

    Article  ADS  Google Scholar 

  21. M. Martini, M. Ericson, G. Chanfray, Phys. Rev. C 84, 055502 (2011)

    Article  ADS  Google Scholar 

  22. J. Nieves, I. Ruiz Simo, M.J. Vicente Vacas, Phys. Lett. B 707, 72 (2012)

    Article  ADS  Google Scholar 

  23. G.D. Megias et al., Phys. Rev. D 94, 093004 (2016)

    Article  ADS  Google Scholar 

  24. T. Leitner, O. Buss, L. Alvarez-Ruso, U. Mosel, Phys. Rev. C 79, 034601 (2009)

    Article  ADS  Google Scholar 

  25. T. Van Cuyck et al., Phys. Rev. C 94, 024611 (2016)

    Article  ADS  Google Scholar 

  26. O. Benhar, D. Day, I. Sick, Rev. Mod. Phys. 80, 289 (2008)

    Article  ADS  Google Scholar 

  27. O. Benhar, J. Phys: Conf. Ser. 408, 012042 (2013)

    Google Scholar 

  28. A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Phys. Rev. C 91, 062501(R) (2015)

    Article  ADS  Google Scholar 

  29. A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Phys. Rev. C 117, 082501 (2016)

    Google Scholar 

  30. A. Lovato, J. Carlson, S. Gandolfi, N. Rocco, R. Schiavilla, Phys. Rev. X 10, 031068 (2020)

    Google Scholar 

  31. O. Benhar, P. Huber, C. Mariani, D. Meloni, Phys. Rep. 700, 1 (2017)

    Article  ADS  Google Scholar 

  32. J. Devan et al., MINER\(\nu \)A Collaboration. Phys. Rev. D 94, 112007 (2016)

    Article  ADS  Google Scholar 

  33. J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012)

    Article  ADS  Google Scholar 

  34. O. Benhar, A. Fabrocini, S. Fantoni, Nucl. Phys. A 505, 267 (1989)

    Article  ADS  Google Scholar 

  35. O. Benhar, A. Lovato, N. Rocco, Phys. Rev. C 92, 024602 (2015)

    Article  ADS  Google Scholar 

  36. N. Rocco, C. Barbieri, O. Benhar, A. De Pace, A. Lovato, Phys. Rev. C 99, 025502 (2019)

    Article  ADS  Google Scholar 

  37. W.M. Alberico, M. Ericson, A. Molinari, Ann. Phys. 154, 356 (1984)

    Article  ADS  Google Scholar 

  38. A. Gil, J. Nieves, E. Oset, Nucl. Phys. A 627, 543 (1997)

    Article  ADS  Google Scholar 

  39. T.W. Donnelly, I. Sick, Phys. Rev. C 60, 065502 (1999)

    Article  ADS  Google Scholar 

  40. S. Frullani, J. Mougey, Adv. Nucl. Phys. 14, 1 (1984)

    Google Scholar 

  41. O. Benhar, Nucl. Phys. News 25, 15 (2016)

    Article  Google Scholar 

  42. T. de Forest Jr., Nucl. Phys. A 392, 232 (1983)

    Article  ADS  Google Scholar 

  43. O. Benhar, A. Fabrocini, S. Fantoni, Phys. Rev. C 41, R24(R) (1990)

    Article  ADS  Google Scholar 

  44. J. Mougey et al., Nucl. Phys. A 262, 461 (1976)

    Article  ADS  Google Scholar 

  45. O. Benhar, A. Fabrocini, S. Fantoni, I. Sick, Nucl. Phys. A 579, 493 (1994)

    Article  ADS  Google Scholar 

  46. D. Rohe et al., Jefferson Lab E97–006 Collaboration. Phys. Rev. Lett. 93, 182501 (2004)

    Article  ADS  Google Scholar 

  47. D. Rohe et al., Jefferson Lab E97–006 Collaboration. Phys. Rev. C 72, 054602 (2005)

    Article  ADS  Google Scholar 

  48. D. Rohe et al., Jefferson Lab E97–006 Collaboration. Nucl. Phys. B (Proc. Suppl.) 159, 152 (2006)

    Article  Google Scholar 

  49. O. Benhar, D. Meloni, Phys. Rev. D 80, 073003 (2009)

    Article  ADS  Google Scholar 

  50. O. Benhar, Phys. Rev. C 87, 024606 (2013)

    Article  ADS  Google Scholar 

  51. O. Benhar, A. Fabrocini, Phys. Rev. C 62, 034304 (2000)

    Article  ADS  Google Scholar 

  52. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)

    Article  ADS  Google Scholar 

  53. O. Benhar, D. Meloni, Nucl. Phys. A 789, 379 (2007)

    Article  ADS  Google Scholar 

  54. E. Vagnoni, O. Benhar, D. Meloni, Phys. Rev. Lett. 118, 142502 (2017)

    Article  ADS  Google Scholar 

  55. E.A. Paschos, J.Y. Yu, M. Sakuda, Phys. Rev. D 69, 014013 (2004)

    Article  ADS  Google Scholar 

  56. O. Lalakuklich, E.A. Paschos, Phys. Rev. D 71, 074003 (2005)

    Article  ADS  Google Scholar 

  57. O. Lalakuklich, E.A. Paschos, G. Piranishvili, Phys. Rev. D 74, 014009 (2006)

    Article  ADS  Google Scholar 

  58. S.L. Adler, Ann. Phys. 50, 189 (1968)

    Article  ADS  Google Scholar 

  59. D.F. Geesaman, K. Saito, A.W. Thomas, Ann. Rev. Nucl. Part. Sci. 45, 337 (1995)

    Article  ADS  Google Scholar 

  60. O. Benhar, V.R. Pandharipande, I. Sick, Phys. Lett. B 410, 79 (1997)

    Article  ADS  Google Scholar 

  61. P. Berge et al., Zeit. Phys. C 49, 187 (1991)

    Article  Google Scholar 

  62. R.G. Roberts, The Structure of the Proton (Cambridge University Press, Cambridge, 1990)

    Book  Google Scholar 

  63. M. Glück, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)

    Article  ADS  Google Scholar 

  64. S.A. Kulagin, R. Petti, Phys. Rev. D 76, 094923 (2007)

    Article  ADS  Google Scholar 

  65. H. Haider, I. Ruiz Simo, M.M. Sajjad Athar, M.J. Vicente Vacas, Phys. Rev. C 84, 054610 (2011)

    Article  ADS  Google Scholar 

  66. M. Hirai, S. Kumano, M. Miyama, Phys. Rev. D 64, 034003 (2001)

    Article  ADS  Google Scholar 

  67. O. Benhar, A. Fabrocini, S. Fantoni, G.A. Miller, V.R. Pandharipande, I. Sick, Phys. Rev. C 44, 2328 (1991)

    Article  ADS  Google Scholar 

  68. O. Benhar, V.R. Pandharipande, Phys. Rev. C 47, 2218 (1993)

    Article  ADS  Google Scholar 

  69. Q. Wu et al., NOMAD Collaboration. Phys. Lett. B 660, 19 (2008)

    Article  ADS  Google Scholar 

  70. V. Lyubushkin et al., NOMAD Collaboration. Eur. Phys. J. C 63, 355 (2009)

    Article  ADS  Google Scholar 

  71. O. Benhar, D. Meloni, Phys. Rev. Lett. 97, 192301 (2006)

    Article  ADS  Google Scholar 

  72. A. Bodek, J.L. Ritchie, Phys. Rev. D 23, 1070 (1981)

    Article  ADS  Google Scholar 

  73. O. Benhar, Nucl. Phys. B (Proc. Suppl.) 229–232, 174 (2010)

    Google Scholar 

  74. K. Abe et al., T2K Collaboration. Phys. Rev. D 98, 012004 (2018)

    Article  ADS  Google Scholar 

  75. K. Abe et al., T2K Collaboration. Phys. Rev. D 98, 032003 (2018)

    Article  ADS  Google Scholar 

  76. X.-G. Lu et al., MINER\(\nu \)A Collaboration. Phys. Rev. Lett. 121, 022504 (2018)

    Article  ADS  Google Scholar 

  77. O. Benhar et al., Jefferson Lab Experiment E12-14-012, arXiv:1406.4080 [nucl-ex]

  78. H. Dai et al., Jefferson Lab Hall A Collaboration. Phys. Rev. C 98, 014617 (2018)

    Article  ADS  Google Scholar 

  79. H. Dai et al., ibidem 99, 054608 (2019)

    ADS  Google Scholar 

  80. L. Gu et al., Jefferson Lab Hall A Collaboration. Phys. Rev. C 103, 034604 (2021)

    Article  ADS  Google Scholar 

  81. S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, R.B. Wiringa, Phys. Rev. C 101, 044612 (2020)

    Article  ADS  Google Scholar 

  82. O. Benhar, N. Farina, Phys. Lett. B 680, 305 (2009)

    Article  ADS  Google Scholar 

  83. J. Isaacson, W.I. Jay, A. Lovato, P.A.N. Machado, N. Rocco, Phys. Rev. C 103, 015502 (2021)

    Article  ADS  Google Scholar 

  84. https://indico.cern.ch/event/727283/

Download references

Funding

This research was supported by Istituto Nazionale di Fisica Nucleare (Grant TEONGRAV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Benhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhar, O. Unraveling the flux-averaged neutrino–nucleus cross section. Eur. Phys. J. Spec. Top. 230, 4309–4320 (2021). https://doi.org/10.1140/epjs/s11734-021-00290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00290-y

Navigation