Skip to main content
Log in

Search for Bound States in \({\Xi^{-}nn}\), \({\Xi^{-}pn}\), and \({\Xi^{-}pp}\) Systems

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Search for bound states in \(\Xi^{-}nn\), \(\Xi^{-}pn\), and \(\Xi^{-}pp\) systems is performed by employing coupled homogeneous integral Faddeev equations written in terms of \(T\)-matrix components. Instead of the traditional partial-wave expansion, a direct integration with respect to angular variables is used in these equations, and three-body coupling in the phase space of each of the \(\Xi^{-}nn\)\(\Lambda\Sigma^{-}n\)\(\Sigma^{-}\Sigma^{0}n\), \(\Xi^{-}np\)\(\Lambda\Lambda n\)\(\Lambda\Sigma^{0}n\), and \(\Xi^{-}pp\)\(\Lambda\Lambda p\)\(\Lambda\Sigma^{0}p\) systems is taken precisely into account within this approach. Two-body \(t\) matrices are the only ingredient of the proposed method. In the case of two-body \(\Xi^{-}N\) interaction, they are found by solving the coupled Lippmann–Schwinger integral equations for the \(\Xi N\)\(\Lambda\Lambda\)\(\Sigma\Sigma\) system in the (\(I=0\), \({}^{1}S_{0}\)) state, the \(\Xi N\) system in the (\(I=0\), \({}^{3}S_{1}\)) state, the \(\Xi N\)\(\Lambda\Sigma\) system in the (\(I=1\), \({}^{1}S_{0}\)) state, and the \(\Xi N\)\(\Lambda\Sigma\)\(\Sigma\Sigma\) system in the (\(I=1\), \({}^{3}S_{1}\)) state. An updated version of the ESC16 microscopic model is used to obtain two-body \(\Xi^{-}N\), YY, and YN interactions generating \(t\) matrices. Two-body NN interaction is reconstructed on the basis of the charge-dependent Bonn model. Direct numerical calculations of the binding energy for the systems being considered clearly indicate that either of the \(\Xi^{-}nn\) and \(\Xi^{-}np\) systems has one bound state with binding energies of 4.5 and 5.5 MeV, respectively, and that the \(\Xi^{-}pp\) system has two bound states with binding energies of 2.7 and 4.4 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. it is noteworthy that the parametrizations presented in [13] and [14] do indeed differ from each other, which will undoubtedly affect the results of the studies quoted above, which relied on the use of the ESC08c potential.

  2. In the original form, the decompositions for the ‘‘potentials’’ in irreducible representations were not used since, in that case, linear combinations of the ‘‘potentials’’ \(V_{27}\), \(V_{8s}\), \(V_{8a}\), etc., poorly corresponded to the graphical information in Figs. 8–10 in [14].

REFERENCES

  1. J. K. Ahn, S. Aoki, K. S. Chung, M. S. Chung, H. En’yo, T. Fukuda, H. Funahashi, Y. Goto, A. Higashi, M. Ieiri, T. Iijima, M. Iinuma, K. Imai, Y. Itow, J. M. Lee, S. Makino, et al., Phys. Lett. B 633, 214 (2006). https://doi.org/10.1016/j.physletb.2005.12.057

    Article  ADS  Google Scholar 

  2. T. Tamagawa, J. K. Ahn, S. Ajimura, H. Akikawa, B. Bassalleck, A. Berdoz, D. Carman, R. E. Chrien, C. A. Davis, P. Eugenio, H. Fischer, G. B. Franklin, J. Franz, T. Fukuda, L. Gan, L. Tang, et al., Nucl. Phys. A 691, 234 (2001). https://doi.org/10.1016/S0375-9474(01)01035-1

    Article  ADS  Google Scholar 

  3. Y. Yamamoto, T. Tamagawa, T. Fukuda, and T. Motoba, Prog. Theor. Phys. 106, 363 (2001). https://doi.org/10.1143/PTP.106.363

    Article  ADS  Google Scholar 

  4. K. Nakazawa, Y. Endo, S. Fukunaga, K. Hoshino, S. H. Hwang, K. Imai, H. Ito, K. Itonaga, T. Kanda, M. Kawasaki, J. H. Kim, S. Kinbara, H. Kobayashi, A. Mishina, S. Ogawa, and H. Shibuya, Prog. Theor. Exp. Phys. 2015, 033D02 (2015). https://doi.org/10.1093/ptep/ptv008

  5. J-PARC Collab. (K. Aoki et al.), arXiv: 2110.04462 [nucl-ex].

  6. H. Garcilazo, A. Valcarce, and T. F. Caramés, J. Phys. G: Nucl. Part. Phys. 41, 095103 (2014). https://doi.org/10.1088/0954-3899/41/9/095103

    Article  ADS  Google Scholar 

  7. H. Garcilazo, A. Valcarce, and T. F. Caramés, J. Phys. G: Nucl. Part. Phys. 42, 025103 (2015). https://doi.org/10.1088/0954-3899/42/2/025103

    Article  ADS  Google Scholar 

  8. H. Garcilazo, Phys. Rev. C 93, 024001 (2016). https://doi.org/10.1103/PhysRevC.93.024001

    Article  ADS  Google Scholar 

  9. H. Garcilazo and A. Valcarce, Phys. Rev. C 93, 034001 (2016). https://doi.org/10.1103/PhysRevC.93.034001

    Article  ADS  Google Scholar 

  10. I. Filikhin, V. Suslov, and B. Vlahovic, Math. Model. Geom. 5, 1 (2017). https://doi.org/10.48550/arXiv.1705.03446

    Article  Google Scholar 

  11. E. Hiyama, K. Sasaki, T. Miyamoto, D. Doi, T. Hatsuda, Y. Yamamoto, and Th. A. Rijken, Phys. Rev. Lett. 124, 092501 (2020). https://doi.org/10.1103/PhysRevLett.124.092501

    Article  ADS  Google Scholar 

  12. K. Miyagawa and M. Kohno, Few Body Syst. 62, 65 (2021).

    Article  ADS  Google Scholar 

  13. M. N. Nagels, Th. A. Rijken, and Y. Yamamoto, arXiv: 1504.02634 [nucl-th].

  14. M. N. Nagels, Th. A. Rijken, and Y. Yamamoto, Phys. Rev. C 102, 054003 (2020). https://doi.org/10.1103/PhysRevC.102.054003

    Article  ADS  Google Scholar 

  15. L. D. Faddeev, Sov. Phys. JETP 12, 1014 (1961).

    Google Scholar 

  16. H. Liu, Ch. Elster, and W. Glockle, Phys. Rev. C 72, 054003 (2005). https://doi.org/10.1103/PhysRevC.72.054003

    Article  ADS  Google Scholar 

  17. M. Egorov, Phys. Rev. C 107, 014611(2023). https://doi.org/10.1103/PhysRevC.107.014611; see also preprint https://www.researchsquare.com/article/rs-2021229/v1.

  18. J. Revai and N. V. Shevchenko, Phys. Rev. C 90, 034004 (2014). https://doi.org/10.1103/PhysRevC.90.034004

    Article  ADS  Google Scholar 

  19. W. Glöckle, H. Witała, D. Hüber, H. Kamada, and J. Golak, Phys. Rep. 274, 107 (1996). https://doi.org/10.1016/0370-1573(95)00085-2

    Article  ADS  Google Scholar 

  20. J. Haidenbauer, Y. Koike, and W. Plessas, Phys. Rev. C 33, 439 (1986). https://doi.org/10.1103/PhysRevC.33.439

    Article  ADS  Google Scholar 

  21. M. M. Nagels, Th. A. Rijken, and Y. Yamamoto, Phys. Rev. C 99, 044003 (2019). https://doi.org/10.1103/PhysRevC.99.044003; http://nn-online.org.

    Article  ADS  Google Scholar 

  22. M. Egorov and V. Postnikov, Nucl. Phys. A 1009, 122172 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122172

    Article  Google Scholar 

  23. STAR Collab. (J. Adam et al.), Nat. Phys. 16, 409 (2020). https://doi.org/10.1038/s41567-020-0799-7

    Article  Google Scholar 

  24. B. Sechi-Zorn, B. Kehoe, and J. Twitty, Phys. Rev. 175, 1735 (1968). https://doi.org/10.1103/PhysRev.175.1735

    Article  ADS  Google Scholar 

  25. G. Alexander, U. Karshon, A. Shapira, and G. Yekutiely, Phys. Rev. 173, 1452 (1968). https://doi.org/10.1103/PhysRev.173.1452

    Article  ADS  Google Scholar 

  26. R. Engelmann, H. Filthuth, V. Hepp, and E. Kluge, Phys. Lett. 21, 587 (1968). https://doi.org/10.1016/0031-9163(66)91310-2

    Article  ADS  Google Scholar 

  27. F. Eisele, H. Filthuth, W. Foehlisch, V. Hepp, and G. Zech, Phys. Lett. B 37, 204 (1971). https://doi.org/10.1016/0370-2693(71)90053-0

    Article  ADS  Google Scholar 

  28. H. Garcilazo, A. Valcarce, and J. Vijande, Phys. Rev. C 94, 024002 (2016). https://doi.org/10.1103/PhysRevC.94.024002

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to E.B. Khitruk for support in the preparation of the manuscript for publication.

Funding

This work was supported by Russian Foundation for Basic Research (project no. 20-02-00004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Egorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, M.V. Search for Bound States in \({\Xi^{-}nn}\), \({\Xi^{-}pn}\), and \({\Xi^{-}pp}\) Systems. Phys. Atom. Nuclei 86, 277–288 (2023). https://doi.org/10.1134/S1063778823030080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823030080

Navigation