Skip to main content
Log in

New Equation for the Vertex of Theory of Finite Fermi-Systems: Accounting for Phonon Coupling

  • Nuclei/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The self-consistent Theory of Finite Fermi Systems (TFFS) is consistently generalized for the case of accounting for phonon coupling (PC) effects in the energy region of pygmy- and giant multipole resonances (PDR and GMR) in magic nuclei with the aim to consider particle-hole (\(ph\)) and both complex \(1p1h\otimes\textrm{phonon}\) and two-phonon configurations. The article is the direct continuation and generalization of the previous article [1], where \(1p1h\)- and only complex \(1p1h\otimes\textrm{phonon}\) configurations were considered. The newest equation for the TFFS main quantity, the effective field (vertex), which describes the nuclear polarizability, has been obtained. It has considerably generalized the results of the previous article and accounts for two-phonon configurations. Two variants of the newest vertex equation have been derived: (1) the first variant contains complex \(1p1h\otimes\textrm{phonon}\) configurations and the full \(1p1h\)-interaction amplitude \(\Gamma\) instead of the known effective interaction \(F\) in [1], (2) the second one contains both \(1p1h\otimes\textrm{phonon}\) and two-phonon configurations. Both variants contain new, as compared to usual approaches, PC contributions, which are of interest in the energy region under consideration and, at least, should result in a redistribution of the PDR and GMR strength, which is important for the explanation of the PDR and GMR fine structure. The qualitative analysis and discussion of the new terms and the comparison to the known time-blocking approximation are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We write down the standard TFFS expression (2) for the \(ph\)-propagator as the result of integration. However, it is desirable to keep in mind that in following Section 4 it is better to consider the propagator as the product GG of two GFs without integration.

  2. In the article [31], a special case of Eq. (10) was considered, namely, there we considered only the second term from the right side of Eq. (10). It turned out that the final equation was rather cumbersome and does not allowed to reasonably account for two-phonon configurations. The present article considerably improves the results of [31]. Suffice it to compare Fig. 7 in [31], where all the terms are begun on \(F\) or \(\delta F\), and the final figure of the present article.

  3. In the present article, the \(g^{4}\) effects are already considered in the two-phonon graphs. So the arguments in [1] about \(\rho=\int GG\tilde{V}d\varepsilon\) in the \(g^{2}\) approximation are not suitable in our case. However, it does not mean that the \(g^{4}\) effects are not important. They are important just for the fine structure where they will result in the strength redistribution.

REFERENCES

  1. S. P. Kamerdzhiev and M. I. Shitov, Eur. Phys. J. A 56, 265 (2020).

    Article  ADS  Google Scholar 

  2. D. Savran, T. Aumann, and A. Zilges, Progr. Part. Nucl. Phys. 70, 210 (2013).

    Article  ADS  Google Scholar 

  3. N. Paar, D. Vretenar, E. Khan, and G. Colo, Rep. Prog. Phys. 70, 691 (2007).

    Article  ADS  Google Scholar 

  4. A. Bracco, E. G. Lanza, and A. Tamii, Prog. Part. Nucl. Phys. 106, 360 (2019).

    Article  ADS  Google Scholar 

  5. S. P. Kamerdzhiev, O. I. Achakovskiy, S. V. Tolokonnikov, and M. I. Shitov, Phys. At. Nucl. 82, 366 (2019).

    Article  Google Scholar 

  6. S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1 (2004).

    Article  ADS  Google Scholar 

  7. A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita, K. Hatanaka, D. Ishikawa, M. Itoh, T. Kawabata, Y. Kalmykov, A. M. Krumbholz, et al., Phys. Rev. Lett. 107, 062502 (2011).

    Article  ADS  Google Scholar 

  8. A. C. Larsen, J. E. Midtbø, M. Guttormsen, T. Renstrøm, S. N. Liddick, A. Spyrou, S. Karampagia, B. A. Brown, O. Achakovskiy, S. Kamerdzhiev, D. L. Bleuel, A. Couture, L. Crespo Campo, B. P. Crider, A. C. Dombos, R. Lewis et al., Phys. Rev. C 97, 054329 (2018).

    Article  ADS  Google Scholar 

  9. A. Repko, V. O. Nesterenko, J. Kvasil, and P.-G. Reinhard, Eur. Phys. J. A 55, 242 (2019).

    Article  ADS  Google Scholar 

  10. N. Ryezayeva, T. Hartmann, Y. Kalmykov, H. Lenske, P. von Neumann-Cosel, V. Yu. Ponomarev, A. Richter, A. Shevchenko, S. Volz, and J.Wambach, Phys. Rev. Lett. 89, 272502 (2002).

    Article  ADS  Google Scholar 

  11. N. A. Lyutorovich, V. I. Tselyaev, O. I. Achakovskiy, and S. P. Kamerdzhiev, JETP Lett. 107, 659 (2018).

    Article  ADS  Google Scholar 

  12. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Intersci., New York, 1967).

  13. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  14. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, 2ed ed. (Nauka, Moscow, 1983; Intersci., New York, 1967).

  15. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 79, 1030 (2016).

    Article  Google Scholar 

  16. D. Voitenkov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein and S. V. Tolokonnikov, Phys. Rev. C 85, 054319 (2012).

    Article  ADS  Google Scholar 

  17. S. P. Kamerdzhiev, Sov. J. Nucl. Phys. 38, 188 (1983).

    Google Scholar 

  18. V. I. Tselyaev, Sov. J. Nucl. Phys. 50, 780 (1989).

    Google Scholar 

  19. V. I. Tselyaev, Phys. Rev. C 75, 024306 (2007).

    Article  ADS  Google Scholar 

  20. A. Avdeenkov, S. Goriely, S. Kamerdzhiev, and S. Krewald, Phys. Rev. C 83, 064316 (2011).

    Article  ADS  Google Scholar 

  21. S. P. Kamerdzhiev and V. N. Tkachev, Z. Phys. A 334, 19 (1989).

    ADS  Google Scholar 

  22. S. P. Kamerdzhiev and V. N. Tkachev, Phys. Lett. B 142, 225 (1984).

    Article  ADS  Google Scholar 

  23. P. F. Bortignon and R. A. Broglia, Nucl. Phys. A 371, 405 (1981).

    Article  ADS  Google Scholar 

  24. P. F. Bortignon, R. A. Broglia, G. F. Bertsch, and J. Pacheco, Nucl. Phys. A 460, 149 (1986).

    Article  ADS  Google Scholar 

  25. S. P. Kamerdzhiev, A. V. Avdeenkov, and O. I. Achakovskiy, Phys. At. Nucl. 77, 1303 (2014).

    Article  Google Scholar 

  26. V. Tselayev, N. Lyutorovich, J. Speth and P.-G. Reinhard, Phys. Rev. C 97, 044308 (2018).

    Article  ADS  Google Scholar 

  27. E. Litvinova and P. Schuck, Phys. Rev. C 100, 064320 (2019).

    Article  ADS  Google Scholar 

  28. V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Inst. Physics, Bristol and Philadelphia, USA, 1992).

    Google Scholar 

  29. F. Knapp, N. Lo Iudice, P. Vesely, F. Andreozzi, G. De Gregorio, and A. Porrino, Phys. Rev. C 92, 054315 (2015).

    Article  ADS  Google Scholar 

  30. V. A. Khodel, A. P. Platonov, and E. E. Saperstein, J. Phys. G: Nucl. Phys. 6, 1199 (1980).

    Article  ADS  Google Scholar 

  31. S. P. Kamerdzhiev and M. I. Shitov, Phys. At. Nucl. 84, 649 (2021).

    Article  Google Scholar 

  32. E. Litvinova, P. Ring, and V. Tselyaev, Phys. Rev. C 88, 044320 (2013).

    Article  ADS  Google Scholar 

  33. V. I. Tselyaev, Phys. Rev. C 88, 054301 (2013).

    Article  ADS  Google Scholar 

  34. V. Tselyaev, N. Lyutorovich, J. Speth, P.-G. Reinhard, and D. Smirnov, Phys. Rev. C 99, 064329 (2019).

    Article  ADS  Google Scholar 

  35. V. Tselyaev, N. Lyutorovich, J. Speth, and P.-G. Reinhard, Phys. Rev. C 102, 064319 (2020).

    Article  ADS  Google Scholar 

  36. L. M. Donaldson, J. Carter, P. von Neumann-Cosel, V. O. Nesterenko, R. Neveling, P.-G. Reinhard, I. T. Usman, P. Adsley, C. A. Bertulani, J. W. Brümmer, E. Z. Buthelezi, G. R. J. Cooper, R. W. Fearick, S. V. Förtsch, H. Fujita, et al., Phys. Rev. C 102, 064327 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.A. Khodel, and V.I. Tselayev for useful discussions and to D.A. Voitenkov for help. S.K. thanks Dr. A.C. Larsen and the Oslo group for stimulating cooperation in the PDR field.

Funding

The article was funded by the internal grant of National Research Center Kurchatov Inctitute (Order No. 2767 of 28.10.21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kamerdzhiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamerdzhiev, S., Shitov, M. New Equation for the Vertex of Theory of Finite Fermi-Systems: Accounting for Phonon Coupling. Phys. Atom. Nuclei 84, 804–816 (2021). https://doi.org/10.1134/S1063778821130159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821130159

Navigation