Skip to main content
Log in

Method of Muonography and Prospects of Its Further Development

  • Elementary Particles and Fields/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Muonography is an analog of other similar concepts such as X-ray radiography, electronography, neutronography, etc. based on the detection of penetrating radiation whose interaction with objects under study causes changes in the initial flux of the used particles. Unlike all other ‘‘graphies’’ which use artificially formed particle fluxes, muons are of natural origin, since they are formed as a result of interactions of primary cosmic rays with the nuclei of atoms in the atmosphere. Since muons keep well the direction of motion of primary particles, muon flux allows studying of disturbances in the heliosphere and magnetosphere of the Earth which lead to variations of the flux of primary cosmic rays. Also, disturbances in the atmosphere directly affect the muon flux, thus it can be used to study atmospheric processes. The paper considers the main ideas of the method of muonography, as well as the examples of its application for studying various processes and phenomena in the heliosphere, magnetosphere and atmosphere of the Earth. In frames of the further development of muonography, we discuss the expediency of creating a network of muon hodoscopes in the Russian Federation for early detection of hazardous processes and phenomena over its territory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

REFERENCES

  1. H. Moraal, A. Belov, and J. M. Clem, Space Sci. Rev. 93, 285 (2000).

    Article  ADS  Google Scholar 

  2. K. Munakata, J. W. Bieber, S. Yasue, C. Kato, M. Koyama, S. Akahane, K. Fujimoto, Z. Fujii, J. E. Humble, and M. L. Duldig, J. Geophys. Res. 105, 27457 (2000).

    Article  ADS  Google Scholar 

  3. D. A. Timashkov, N. S. Barbashina, V. V. Borog, J. N. Capdevielle, R. P. Kokoulin, A. A. Petrukhin, O. Saavedra, V. V. Shutenko, and I. I. Yashin, in Proceedings of the 30th International Cosmic Ray Conference, ICRC 2007 (Merida, 2007), Vol. 1, p. 685.

  4. I. I. Yashin, N. V. Ampilogov, I. I. Astapov, N. S. Barbashina, V. V. Borog, A. N. Dmitrieva, R. P. Kokoulin, K. G. Kompaniets, G. Mannocchi, A. S. Mikhailenko, A. A. Petrukhin, O. Saavedra, V. V. Shutenko, G. Trinchero, and E. I. Yakovleva, J. Phys.: Conf. Ser. 409, 012192 (2013).

    Google Scholar 

  5. A. Dmitrieva, N. Ampilogov, I. Astapov, N. Barbashina, V. Borog, D. Chernov, A. Kovylyaeva, R. Kokoulin, K. Kompaniets, G. Mannocchi, Yu. Mishutina, A. Petrukhin, O. Saavedra, V. Shutenko, O. Sit’ko, G. Trinchero, et al., J. Phys.: Conf. Ser. 632, 012054 (2015).

    Google Scholar 

  6. A. N. Dmitrieva, N. S. Barbashina, A. A. Kovylyaeva, D. V. Chernov, V. V. Shutenko, E. I. Yakovleva, and I. I. Yashin, Bull. Russ. Acad. Sci.: Phys. 79, 383 (2015).

    Article  Google Scholar 

  7. I. I. Astapov, N. S. Barbashina, A. N. Dmitrieva, R. P. Kokoulin, A. A. Petrukhin, V. V. Shutenko, E. I. Yakovleva, and I. I. Yashin, Adv. Space Res. 56, 2713 (2015).

    Article  ADS  Google Scholar 

  8. A. K. Abiev, A. V. Bagulya, M. M. Chernyavsky, A. A. Dimitrienko, A. A. Gadjiev, M. S. Gadjiev, V. I. Galkin, A. A. Gippius, L. A. Goncharova, V. M. Grachev, A. S. Konovalov, N. S. Konovalova, A. K. Managadze, N. M. Okateva, N. G. Polukhina, T. M. Roganova, et al., Phys. At. Nucl. 82, 897 (2019).

    Article  Google Scholar 

  9. W. Kolhörster, Z. Phys. 47, 449 (1928).

    Article  ADS  Google Scholar 

  10. R. A. Millikan and H. V. Neher, Phys. Rev. 43, 381 (1933).

    Article  Google Scholar 

  11. A. H. Compton, E. O. Wollan, and R. D. Bennett, Rev. Sci. Instrum. 5, 415 (1934).

    Article  ADS  Google Scholar 

  12. S. E. Forbush, Phys. Rev. 51, 1108 (1937).

    Article  ADS  Google Scholar 

  13. V. P. Chuprova, S. K. Gerasimova, V. G. Grigoryev, P. A. Krivoshapkin, G. F. Krymsky, V. P. Mamrukova, V. M. Migunov, A. N. Prikhodko, G. V. Shafer, G. V. Skripin, Ye. Ye. Sorokin, S. A. Starodubtsev, and V. E. Timofeev, Adv. Space Res. 44, 1200 (2009).

    Article  ADS  Google Scholar 

  14. G. V. Shafer and Yu. G. Shafer, Precision Observation of Cosmic Rays in Yakutsk (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  15. I. Kondo, Z. Fujii, and K. Nagashima, in Proceedings of the 14th International Cosmic Ray Conference, ICRC 1975 (Munchen, Germany, 1975), Vol. 4, p. 1182.

  16. R. R. S. Mendonca, C. Wang, C. R. Braga, E. Echer, A. Dal Lago, J. E. R. Costa, K. Munakata, H. Li, Z. Liu, J.-P. Raulin, T. Kuwabara, M. Kozai, C. Kato, M. Rockenbach, N. J. Schuch, H. K. Al Jassar, et al., J. Geophys. Res. Space Phys. 124, 9791 (2019).

    Article  ADS  Google Scholar 

  17. V. V. Borog, A. Yu. Burinskij, and V. V. Dronov, Izv. Akad. Nauk, Ser. Fiz. 59, 191 (1995).

    Google Scholar 

  18. N. S. Barbashina, R. P. Kokoulin, K. G. Kompaniets, G. Mannocchi, A. A. Petrukhin, O. Saavedra, D. A. Timashkov, G. Trinchero, D. V. Chernov, V. V. Shutenko, and I. I. Yashin, Instrum. Exp. Tech. 51, 180 (2008).

    Article  Google Scholar 

  19. N. V. Ampilogov, I. I. Astapov, N. S. Barbashina, A. N. Dmitrieva, A. A. Kovylyaeva, K. G. Kompaniets, A. A. Petrukhin, V. V. Shutenko, and I. I. Yashin, Phys. Proc. 74, 478 (2015).

    Article  ADS  Google Scholar 

  20. I. I. Yashin, I. I. Astapov, N. S. Barbashina, V. V. Borog, D. V. Chernov, A. N. Dmitrieva, R. P. Kokoulin, K. G. Kompaniets, Yu. N. Mishutina, A. A. Petrukhin, V. V. Shutenko, and E. I. Yakovleva, Adv. Space Res. 56, 2693 (2015).

    Article  ADS  Google Scholar 

  21. A. Kovylyaeva, I. Astapov, A. Dmitrieva, V. Borog, N. Osetrova, and I. Yashin, Data Sci. J. 19, 11 (2020).

    Article  Google Scholar 

  22. A. V. Belov, E. A. Eroshenko, V. A. Oleneva, A. B. Struminsky, and V. G. Yanke, Adv. Space Res. 27, 625 (2001).

    Article  ADS  Google Scholar 

  23. N. Barbashina, N. Ampilogov, I. Astapov, V. Borog, A. Dmitrieva, A. Kovylyaeva, R. Kokoulin, K. Kompaniets, G. Mannocchi, Yu. Mishutina, A. Petrukhin, O. Saavedra, V. Shutenko, O. Sit’ko, G. Trinchero, E. Yakovleva, et al., J. Phys.: Conf. Ser. 632, 012049 (2015).

    Google Scholar 

  24. N. S. Barbashina, I. I. Astapov, V. V. Borog, A. N. Dmitrieva, R. P. Kokoulin, K. G. Kompaniets, A. A. Petrukhin, O. A. Sitko, V. V. Shutenko, E. I. Yakovleva, and I. I. Yashin, PoS (ICRC2015), 133 (2015).

  25. A. A. Kovylyaeva, I. I. Astapov, N. S. Barbashina, V. V. Borog, A. N. Dmitrieva, K. G. Kompaniets, Yu. N. Mishutina, A. A. Petrukhin, V. V. Shutenko, E. I. Yakovleva, and I. I. Yashin, Phys. At. Nucl. 82, 892 (2019).

    Article  Google Scholar 

  26. J. Perez Peraza and I. Libin, Highlights in Helioclimatology (Boston, 2012), p. 284.

    Google Scholar 

  27. D. A. Timashkov, Yu. V. Balabin, N. S. Barbashina, R. P. Kokoulin, K. G. Kompaniets, G. Mannocchi, A. A. Petrukhin, O. Saavedra, V. V. Shutenko, G. Trinchero, E. V. Vashenyuk, and I. I. Yashin, Astropart. Phys. 30, 117 (2008).

    Article  ADS  Google Scholar 

  28. https://ccmc.gsfc.nasa.gov/iswa/.

  29. https://wwwbis.sidc.be/cactus/.

  30. I. I. Astapov, N. S. Barbashina, V. V. Borog, I. S. Veselovskii, N. V. Osetrova, A. A. Petrukhin, V. V. Shutenko, and I. I. Yashin, Bull. Russ. Acad. Sci.: Phys. 81, 183 (2017).

    Article  Google Scholar 

  31. I. I. Yashin, I. I. Astapov, N. S. Barbashina, A. N. Dmitrieva, K. G. Kompaniets, A. A. Petrukhin, and V. V. Shutenko, Bull. Russ. Acad. Sci.: Phys. 83, 572 (2019).

    Article  Google Scholar 

  32. I. I. Astapov, N. S. Barbashina, A. N. Dmitrieva, I. A. Melnikova, N. V. Osetrova, V. V. Shutenko, and I. I. Yashin, J. Phys.: Conf. Ser. 1390, 012060 (2019).

    Google Scholar 

  33. I. I. Yashin, N. V. Ampilogov, I. I. Astapov, N. S. Barbashina, V. V. Borog, A. N. Dmitrieva, R. P. Kokoulin, K. G. Kompaniets, G. Mannocchi, A. S. Mikhailenko, A. A. Petrukhin, O. Saavedra, G. Trinchero, V. V. Shutenko, and E. I. Yakovleva, Bull. Russ. Acad. Sci.: Phys. 77, 554 (2013).

    Article  Google Scholar 

  34. Yu. B. Pavlyukov, N. I. Serebryannik, S. G. Belikov, N. A. Bezrukova, E. L. Savyolov, V. A. Okhrimenko, A. V. Travov, A. A. Shumilin, T. A. Belyakova, T. A. Ratnikova, V. P. Pylaev, and A. E. Larin, Provisional Methodology Guidelines for the Use of the DMRL-C Doppler Meteorological Radar Data in Synoptic Practice (Rosgidromet, Moscow, 2014) [in Russian].

    Google Scholar 

  35. N. S. Barbashina, I. I. Astapov, T. A. Belyakova, A. N. Dmitrieva, A. V. Kozyrev, Yu. B. Pavlyukov, A. A. Petrukhin, N. I. Serebryannik, V. V. Shutenko, and I. I. Yashin, Bull. Russ. Acad. Sci.: Phys. 81, 230 (2017).

    Article  Google Scholar 

  36. A. P. Kachur, N. S. Barbashina, Yu. B. Pavlyukov, A. A. Petrukhin, N. I. Serebryannik, and V. V. Shutenko, Phys. At. Nucl. 84 (6) (2021, in press).

Download references

Funding

The work has been performed in National Research Nuclear University MEPhI at the Unique Scientific Facility ‘‘Experimental complex NEVOD’’ with the support of the Ministry of Science and Higher Education of the Russian Federation, Project ‘‘Fundamental problems of cosmic rays and dark matter,’’ no. 0723-2020-0040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Barbashina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbashina, N.S., Petrukhin, A.A. & Shutenko, V.V. Method of Muonography and Prospects of Its Further Development. Phys. Atom. Nuclei 84, 1182–1194 (2021). https://doi.org/10.1134/S1063778821130044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821130044

Navigation