Skip to main content
Log in

Muon Radiography of Large Natural and Industrial Objects—A New Stage in the Nuclear Emulsion Technique

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new study of a historical object on the territory of the Russian Federation, the Holy Trinity Danilov Monastery, implemented by the muon radiography is presented. The method is based on the registration of changes in the cosmic muon fluxes during their passage through the object under study. Nuclear photoemulsions with unique spatial and angular resolution having the widest range of applications in experimental nuclear physics were used as experimental equipment. The experiment demonstrates a high efficiency of the method in the search for hidden objects, the presence of which on the territory of the monastery is confirmed by the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. Nakamura, A. Ariga, T. Ban, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 556, 80 (2006).

    Google Scholar 

  2. C. Ahdida, R. Albanese, A. Alexandrov, et al., J. Instrum. 14, P03025 (2019).

    Article  Google Scholar 

  3. N. A. Dobrotin, K. A. Kotel’nikov, A. V. Apanasenko, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 53, 250 (1989).

    ADS  Google Scholar 

  4. G. T. Zatsepin, S. I. Nikol’skii, I. V. Rakobol’skaya, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 61, 1186 (1997).

    Google Scholar 

  5. V. Tioukov, A. Alexandrov, C. Bozza, et al., Sci. Rep. 9, 6695 (2019).

    Article  ADS  Google Scholar 

  6. N. Agafonova, A. Aleksandrov, A. Anokhina, et al., J. Phys.: Conf. Ser. 869, 012048 (2017).

    Google Scholar 

  7. C. F. Powell, P. H. Fowler, and D. H. Perkins, Study of Elementary Particles by the Photographic Method (Pergamon, Oxford, 1959).

    Google Scholar 

  8. D. H. Perkins, Introduction to High Energy Physics (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  9. K. Morishima, M. Kuno, A. Nishio, et al., Nature (London, U.K.) 552, 386 (2017).

    Article  ADS  Google Scholar 

  10. A. E. Chudakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 19, 651 (1955).

    Google Scholar 

  11. A. Ariga, T. Ariga, G. de Lellis, et al., in Particle Physics Reference Library, Vol. 2: Detectors for Particles and Radiations (Springer, Cham, 2020), p. 383.

  12. S. Friesen and K. Kristiansson, Nature (London, U.K.) 16, 686 (1950).

    Article  Google Scholar 

  13. K. Kristiansson, Philos. Mag. 44, 268 (1953).

    Article  Google Scholar 

  14. S. Friesen and L. Stigmark, Ark. Fysik 8, 121 (1954).

    Google Scholar 

  15. S. Friesen, Ark. Fysik 8, 305 (1953).

    Google Scholar 

  16. B. A. Voikovskii, A. I. Galaktionov, M. I. Tret’yakova, et al., Prib. Tekh. Eksp., No. 6, 38 (1957).

  17. A. Alexandrov, A. Buonaura, L. Consiglio, et al., J. Instrum. 11, P06002 (2016).

    Article  Google Scholar 

  18. A. Alexandrov, G. de Lellis, and V. Tioukov, Sci. Rep. 9 (2019).

  19. N. Agafonova, A. Aleksandrov, A. Anokhina, et al., Eur. Phys. J. C 78, 578 (2018).

    Article  ADS  Google Scholar 

  20. A. B. Alexandrov, M. S. Vladimirov, V. I. Galkin, L. A. Goncharova, V. M. Grachev, S. G. Vasina, N. S. Konovalova, A. A. Malovichko, A. K. Managadze, N. M. Okat’eva, N. G. Polukhina, T. M. Roganova, N. I. Starkov, V. E. Tioukov, M. M. Chernyavsky, and T. V. Shchedrina, Phys. Usp. 60, 1277 (2017).

    Article  ADS  Google Scholar 

  21. S. A. Baklagin, V. M. Grachev, N. S. Konovalova, et al., Int. J. Innov. Res. Sci. Eng. Technol. 5, 0507027 (2016).

    Google Scholar 

  22. A. Abiev, A. Bagulya, M. Chernyavsky, et al., Appl. Sci. 9, 2040 (2019).

    Article  Google Scholar 

  23. A. B. Aleksandrov, S. G. Vasina, V. I. Galkin, L. A. Goncharova, A. S. Konovalov, N. S. Konovalova, P. S. Korolev, A. A. Larionov, I. A. Melnichenko, A. K. Managadze, N. M. Okateva, N. G. Polukhina, T. M. Roganova, Zh. T. Sadykov, N. I. Starkov, et al., Phys. At. Nucl. 84, 855 (2021).

    Article  Google Scholar 

  24. A. B. Aleksandrov, A. V. Bagulya, M. S. Vladimirov, M. M. Chernyavsky, V. I. Galkin, L. G. Dedenko, N. V. Fomenko, N. S. Konovalova, G. de Lellis, A. K. Managadze, O. I. Orurk, N. G. Polukhina, T. M. Roganova, T. V. Shchedrina, C. Sirignano, N. I. Starkov, et al., Phys. Part. Nucl. Lett. 12, 713 (2015).

    Article  Google Scholar 

  25. A. B. Aleksandrov, A. V. Bagulya, M. M. Chernyavsky, et al., AIP Conf. Proc. 1702, 110002 (2015).

    Article  Google Scholar 

  26. A. Alexandrov, N. Konovalova, N. Okateva, et al., Measurement 187, 110244 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Shchedrina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

This article was prepared for the special issue dedicated to the centenary of A. E. Chudakov

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.B., Vasina, S.G., Galkin, V.I. et al. Muon Radiography of Large Natural and Industrial Objects—A New Stage in the Nuclear Emulsion Technique. J. Exp. Theor. Phys. 134, 506–510 (2022). https://doi.org/10.1134/S106377612204001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612204001X

Navigation