Skip to main content
Log in

Radiative Corrections in Møller Scattering for PRad Experiment at Thomas Jefferson National Accelerator Facility (TJNAF)

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

By applying several methods for removing infrared divergences, electromagnetic radiative corrections in low-energy Møller scattering are calculated under conditions of the PRad experiment at Thomas Jefferson National Accelerator Facility (TJNAF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Chr. Møller, Ann. Phys. 406, 531 (1932).

  2. D. Yu. Bardin and N. M. Shumeiko, Nucl. Phys. B 127, 242 (1977).

    Article  ADS  Google Scholar 

  3. N. M. Shumeiko and J. G. Suarez, J. Phys. G 26, 113 (2000).

    Article  ADS  Google Scholar 

  4. A. N. Ilyichev and V. A. Zykunov, Phys. Rev. D 72, 033018 (2005); hep-ph/0504191.

    Article  ADS  Google Scholar 

  5. A. Afanasiev, Eu. Chudakov, A. Ilyichev, and V. Zykunov, Comput. Phys. Commun. 176, 218 (2007);

    Article  ADS  Google Scholar 

  6. JLAB-PHY-06-456, hep-ph/0603027.

  7. SLAC E158 Collab. (P. L. Anthony et al.), Phys. Rev. Lett. 95, 081601 (2005); hep-ex/0504049.

    Article  Google Scholar 

  8. J. Erler and M. J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005); hep-ph/0409169.

    Article  ADS  Google Scholar 

  9. MOLLER Collab. (J. Benesch et al.), arxiv: 1411.4088 [nucl-ex].

  10. A. Czarnecki and W. J. Marciano, Phys. Rev. D 53, 1066 (1996).

    Article  ADS  Google Scholar 

  11. F. J. Petriello, Phys. Rev. D 67, 033006 (2003); hep-ph/0210259.

    Article  ADS  Google Scholar 

  12. V. A. Zykunov, Phys. At. Nucl. 67, 1342 (2004).

    Article  Google Scholar 

  13. A. Aleksejevs, S. Barkanova, A. Ilyichev, and V. Zykunov, Phys. Rev. D 82, 093013 (2010); arXiv: 1008.3355 [hep-ph].

    Article  ADS  Google Scholar 

  14. C. A. Heusch, Int. J. Mod. Phys. A 15, 2347 (2000).

    ADS  Google Scholar 

  15. A. Denner and S. Pozzorini, Eur. Phys. J. C 7, 185 (1999); hep-ph/9807446.

    Article  ADS  Google Scholar 

  16. V. A. Zykunov, Phys. At. Nucl. 72, 1486 (2009).

    Article  Google Scholar 

  17. A. G. Aleksejevs, S. G. Barkanova, and V. A. Zykunov, Phys. At. Nucl. 75, 209 (2012).

    Article  Google Scholar 

  18. R. Pohl et al., Nature (London, U.K.) 466, 213 (2010).

    Article  ADS  Google Scholar 

  19. A. Antognini et al., Science (Washington, DC, U. S.) 339, 417 (2013).

    Article  ADS  Google Scholar 

  20. A. Gasparian, D. Dutta, H. Gao, and M. Khandaker, Jefferson Laboratory Experiment E12-11-106 (2011).

  21. A. Gasparian, H. Gao, D. Dutta, N. Liyanage, E. Pasyuk, D. W. Higinbotham, C. Peng, K. Gnanvo, I. Akushevich, A. Ahmidouch, C. Ayerbe, X. Bai, H. Bhatt, D. Bhetuwal, J. Brock, V. Burkert, et al., arXiv: 2009.10510v1 [nucl-ex].

  22. I. Akushevich, H. Gao, A. Ilyichev, and M. Meziane, Eur. Phys. J. A 51, 1 (2015).

    Article  ADS  Google Scholar 

  23. W. Xiong, A. Gasparian, H. Gao, D. Dutta, M. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, X. Bai, L. Ye, K. Gnanvo, C. Gu, M. Levillain, X. Yan, D. W. Higinbotham, M. Meziane, et al., Nature (London, U.K.) 575, 147 (2019).

    Article  ADS  Google Scholar 

  24. S. G. Karshenboim, V. G. Ivanov, and S. I. Eidelman, Phys. Part. Nucl. Lett. 16, 514 (2019).

    Article  Google Scholar 

  25. M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys. 34, 687 (1986).

    Google Scholar 

  26. F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

    Article  ADS  Google Scholar 

  27. L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).

    Article  ADS  Google Scholar 

  28. G. ’t Hooft and M. Veltman, Nucl. Phys. B 153, 365 (1979).

    Article  ADS  Google Scholar 

  29. V. A. Zykunov, Phys. At. Nucl. 78, 453 (2015).

    Article  Google Scholar 

  30. E. Byckling and K. Kajantie, Particle Kinematics (Wiley, New York, 1973).

    Google Scholar 

  31. R. H. Dalitz, Philos. Mag. 44, 1068 (1953).

    Article  Google Scholar 

  32. G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959).

    Article  ADS  Google Scholar 

  33. P. G. Lepage, J. Comput. Phys. 27, 192 (1978).

    Article  ADS  Google Scholar 

  34. V. A. Zykunov, Phys. At. Nucl. 80, 699 (2017).

    Article  Google Scholar 

  35. V. A. Zykunov, Perturbative Calculations in High Energy Physics (Francisk Skorina GSU, Gomel, 2020) [in Russian].

    Google Scholar 

  36. MINAMI-TATEYA Group Collab. (T. Ishikawa et al.), KEK-92-19.

Download references

ACKNOWLEDGMENTS

I am grateful to I.V. Akushevich, Yu.M. Bystristkiy, and A.N. Ilyichev for a discussion on the results of this study.

Funding

This work was supported in part by the Conver- gence-2025 Research Program of Republic of Belarus (Microscopic World and Universe Subprogram).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zykunov.

Appendices

Appendix

BREMSSTRAHLUNG PHASE SPACE

We now depict in the center-of-mass frame the final-particle vectors (see Fig. 5), employing the auxiliary vector \({\mathbf{p}_{5}}=-{\mathbf{p}}\). For the energy of the final electron with 4-momentum \(p_{3}\), we obtain

$${p_{3}}_{0}=\frac{\sqrt{s^{3}}+2p_{0}^{2}\sqrt{s}-3p_{0}s+Ap_{0}s_{q}}{2s-4p_{0}\sqrt{s}+2p_{0}^{2}(1-A^{2})},$$
(A.1)

where

$$s_{q}=\sqrt{s(\sqrt{s}-2p_{0})^{2}+4m^{2}\left[p_{0}^{2}(A^{2}-1)+2p_{0}\sqrt{s}-s\right]}$$

and

$$A=\cos(\widehat{{\mathbf{p}_{5}},{\mathbf{p}_{3}}})$$
(A.2)
$${}=\sin\theta_{3}\sin\theta_{5}\cos\varphi_{5}+\cos\theta_{3}\cos\theta_{5}$$
$${}=-\sin\theta_{3}\sin\theta_{p}\cos\varphi_{p}-\cos\theta_{3}\cos\theta_{p}.$$

In the ultrarelativistic approximation, the expression for the energy assumes the following compact form:

$${p_{3}}_{0}=\frac{\sqrt{s}}{2}\frac{\sqrt{s}-2p_{0}}{\sqrt{s}-p_{0}(1+A)}.$$

Taking into account the foregoing, we obtain the phase space in the form

$$d\Phi_{3}=\frac{|{\mathbf{p}_{3}}|}{4{p_{4}}_{0}{\mathcal{F}}}d\cos\theta_{3}d\varphi_{3}\frac{d^{3}{\mathbf{p}}}{2{p}_{0}}.$$
(A.3)

Integration with respect to the azimuthal angle \(\varphi_{3}\) yields \(2\pi\) because of symmetry with respect to the rotation of the system about the beam axis, and we also have

$${\mathcal{F}}=1+\frac{{p_{3}}_{0}(1-A|{\mathbf{p}}|/|{\mathbf{p}_{3}}|)}{\sqrt{{p_{3}}_{0}^{2}-2A|{\mathbf{p}}||{\mathbf{p}_{3}}|+|{\mathbf{p}}|^{2}}}.$$
(A.4)

Further, we proceed to perform integration with respect \({\mathbf{p}}\); that is,

$$d^{3}{\mathbf{p}}=|{\mathbf{p}}|^{2}d|{\mathbf{p}}|d\cos\theta_{p}d\varphi_{p},\quad\theta_{p}=\pi-\theta_{5},$$
$$\varphi_{p}=\pi+\varphi_{5}.$$

Upon employing the vector \({\mathbf{p}_{5}}\), the final-particle vectors assume the following form in the center-of-mass frame:

$${\mathbf{p}_{3}}=(|{\mathbf{p}_{3}}|\sin\theta_{3},0,|{\mathbf{p}_{3}}|\cos\theta_{3}),$$
(A.5)
$${\mathbf{p}_{5}}=(|{\mathbf{p}}|\sin\theta_{5}\cos\varphi_{5},|{\mathbf{p}}|\sin\theta_{5}\sin\varphi_{5},|{\mathbf{p}}|\cos\theta_{5}),$$
$${\mathbf{p}_{4}}={\mathbf{p}_{5}}-{\mathbf{p}_{3}}.$$

Clearly, the energy \({p_{4}}_{0}=\sqrt{m^{2}+|{\mathbf{p}_{4}}|^{2}}\) can be calculated on the basis of the set of Eqs. (A.5).

We will now express all radiative invariants in terms of the photon energy, azimuthal angle, and polar angle as [28]

$$z_{1}=2p_{0}{p_{1}}_{0}-2|{\mathbf{p}}||{\mathbf{p}_{1}}|\cos\theta_{p},$$
(A.6)
$$v_{1}=2p_{0}{p_{2}}_{0}+2|{\mathbf{p}}||{\mathbf{p}_{2}}|\cos\theta_{p},$$
$$z=2p_{0}{p_{3}}_{0}+2|{\mathbf{p}}||{\mathbf{p}_{3}}|A,$$
$$v=2p_{0}(\sqrt{s}-{p_{3}}_{0})-2|{\mathbf{p}}||{\mathbf{p}_{3}}|A.$$

We note that, in all of the formulas, \(p_{0}\) and \(|{\mathbf{p}}|\) are different: in these quantities, we retain the photon mass \(\lambda\) (that is, \(p_{0}^{2}-|{\mathbf{p}}|^{2}=\lambda^{2}\rightarrow 0\)), which we use in the following as an infinitesimal parameter to regularize infrared divergences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zykunov, V.A. Radiative Corrections in Møller Scattering for PRad Experiment at Thomas Jefferson National Accelerator Facility (TJNAF). Phys. Atom. Nuclei 84, 739–749 (2021). https://doi.org/10.1134/S1063778821050161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821050161

Navigation