Skip to main content
Log in

Study of the Halo Structure for Some Light Neutron-Rich Nuclei Using the Cosh Potential

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The radial wave functions of the cosh potential within the three-body model of \(\left({\textrm{Core}+2n}\right)\) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich \({}^{{6}}\)He, \({}^{{11}}\)Li, \({}^{{14}}\)Be, and \({}^{{17}}\)B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. I. Tanihata, J. Phys. G: Nucl. Part. Phys. 22, 157 (1996).

    Article  ADS  Google Scholar 

  2. P. G. Hansen, A. S. Jensen, and B. Jonson, Ann. Rev. Nucl. Part. Sci. 45, 591 (1995).

    Article  ADS  Google Scholar 

  3. Chen Bao-Qiu and Ma Zhong-Yu, Chin. Phys. Lett. 18, 1561 (2001).

    Article  ADS  Google Scholar 

  4. Zh. G. Hu, M. Wang, H. Sh. Xu, Zh. Y. Sun, J. S. Wang, G. Q. Xiao, W. L. Zhan, Zh. G. Xiao, R. Sh. Mao, Ch. Li, X. Y. Zhang, H. B. Zhang, T. Ch. Zhao, Zh. G. Xu, Y. Wang, R. F. Chen, et al., Sci. China, Ser. G: Phys. Mech. Astron. 51, 781 (2008).

    Google Scholar 

  5. A. N. Antonov, D. N. Kadrev, M. K. Gaidarov, E. Moya de Guerra, P. Sarriguren, J. M. Udias, V. K. Lukyanov, E. V. Zemlyanaya, and G. Z. Krumova, Phys. Rev. C 72, 044307 (2005).

    Article  ADS  Google Scholar 

  6. G. D. Alkhazov, A. V. Dodrovolsky, P. Egelhof, H. Geissel, H. Irnich, A. V. Khanzadeev, G. A. Korolev, A. A. Lobodenko, G. Münzenberg, M. Mutterer, S. R. Neumaier, W. Schwab, D. M. Seliverstov, T. Suzuki, and A. A. Vorobyov, Nucl. Phys. A 712, 269 (2002).

    Article  ADS  Google Scholar 

  7. A. V. Dodrovolsky, G. D. Alkhazov, M. N. Andronenko, A. Bauchet, P. Egelhof, S. Fritz, H. Geissel, C. Gross, A. V. Khanzadeev, G. A. Korolev, G. Kraus, A. A. Lobodenko, G. Münzenberg, M. Mutterer, S. R. Neumaier, T. Schäfer, et al., Nucl. Phys. A 766, 1 (2006).

    Article  ADS  Google Scholar 

  8. A. N. Abdullah, Pramana—J. Phys. 89, 43 (2017).

    Google Scholar 

  9. Z. Ren, N. Li, H. Y. Zhang, and W. Q. Shen, Mod. Phys. Lett. A 18, 174 (2003).

    Article  ADS  Google Scholar 

  10. A. N. Abdullah, Iran. J. Sci. Technol. Trans. Sci. 44, 283 (2020).

    Article  Google Scholar 

  11. T. Suzuki, R. Kanungo, O. Bochkarev, L. Chulkov, D. Cortina, M. Fukuda, H. Geissel, M. Hellström, M. Ivanov, R. Janik, K. Kimura, T. Kobayashi, A. A. Korsheninnikov, G. Münzenberg, F. Nickel, A. A. Ogloblin, et al., Nucl. Phys. A 658, 313 (1999).

    Article  ADS  Google Scholar 

  12. A. N. Abdullah, Int. J. Mod. Phys. E 29, 2050015 (2020).

    Article  ADS  Google Scholar 

  13. B. A. Brown, S. E. Massen, and P. E. Hodgson, J. Phys. G: Nucl. Phys. 5, 1655 (1979).

    Article  ADS  Google Scholar 

  14. M. Wang, Zh. G. Hu, H. Sh. Xu, Zh. Yu Sun, J. S. Wang, G. Q. Xiao, W. L. Zhan, X. Yi. Zhang, Ch. Li, R. Sh. Mao, H. B. Zhang, T. Ch. Zhao, Zh. G. Xu, Yu. Wang, R. F. Chen, T. H. Huang, et al., Chin. Phys. C 32, 548 (2008).

    Article  ADS  Google Scholar 

  15. M. E. Grypeos, G. A. Lalazissis, S. E. Massen, and C. P. Panos, J. Phys. G: Nucl. Part. Phys. 17, 1093 (1991).

    Article  ADS  Google Scholar 

  16. A. N. Abdullah, Int. J. Mod. Phys. E 26, 1750048 (2017).

    Article  ADS  Google Scholar 

  17. L. G. Qiang, J. Phys. G. Nucl. Part. Phys. 17, 1 (1991).

    Article  ADS  Google Scholar 

  18. L. R. B. Elton, Nuclear Sizes (Oxford Univ. Press, London, 1961), Chap. 2, Sect. 2.1.5, p. 22.

  19. R. Baldik, H. Avtekin, and E. Tel, Phys. At. Nucl. 73, 74 (2010).

    Article  Google Scholar 

  20. A. N. Antonov, M. K. Gaidarov, D. N. Kadrev, P. E. Hodgson, and E. Moya de Guerra, Int. J. Mod. Phys. E 13, 759 (2004).

    Article  ADS  Google Scholar 

  21. B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115 (2014).

    Article  ADS  Google Scholar 

  22. J. B. McGrory and B. H. Wildenthal, Phys. Rev. C 7, 974 (1973).

    Article  ADS  Google Scholar 

  23. H. Hasper, Phys. Rev. C 19, 1482 (1979).

    Article  ADS  Google Scholar 

  24. G. Audi, F. G. Kondev, Meng Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017).

    Article  ADS  Google Scholar 

  25. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and Xing Xu, Chin. Phys. C 41, 030003 (2017).

    Article  ADS  Google Scholar 

  26. I. Tanihata, H. Savajols, and R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013).

    Article  ADS  Google Scholar 

  27. T. Moriguchi, A. Ozawa, S. Ishimoto, Y. Abe, M. Fukuda, I. Hachiuma, Y. Ishibashi, Y. Ito, T. Kuboki, M. Lantz, D. Nagae, K. Namihira, D. Nishimura, T. Ohtsubo, H. Ooishi, T. Suda, et al., Phys. Rev. C 88, 024610 (2013).

    Article  ADS  Google Scholar 

  28. S. Terashima, I. Tanihata, R. Kanungo, A. Estradé, W. Horiuchi, F. Ameil, J. Atkinson, Y. Ayyad, D. Cortina-Gil, I. Dillmann, A. Evdokimov, F. Farinon, H. Geisse, G. Guastalla, R. Janik, M. Kimura, et al., Prog. Theor. Exp. Phys. 2014, 101D02 (2014).

  29. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).

    Article  ADS  Google Scholar 

  30. Y. S. Shen and Z. Z. Ren, Phys. Rev. C 54, 1158 (1996).

    Article  ADS  Google Scholar 

  31. S. Ahmad, A. A. Usmani, and Z. A. Khan, Phys. Rev. C 96, 064602 (2017).

    Article  ADS  Google Scholar 

  32. G. D. Alkhazov, A. V. Dobrovolsky, and A. A. Lobodenko, Nucl. Phys. A 734, 361 (2004).

    Article  ADS  Google Scholar 

  33. S. Ilieva, F. Aksouh, G. D. Alkhazov, L. Chulkov, A. V. Dobrovolsky, P. Egelhof, H. Geissel, M. Gorska, A. Inglessi, R. Kanungo, A. V. Khanzadeev, O. A. Kiselev, G. A. Korolev, X. C. Le, Yu. A. Litvinov, C. Nociforo, et al., Nucl. Phys. A 875, 8 (2012).

    Article  ADS  Google Scholar 

  34. Y. Yamaguchi, C. Wu, T. Suzuki, A. Ozawa, D. Q. Fang, M. Fukuda, N. Iwasa, T. Izumikawa, H. Jeppesen, R. Kanungo, R. Koyama, T. Ohnishi, T. Ohtsubo, W. Shinozaki, T. Suda, M. Takahashi, and I. Tanihata, Phys. Rev. C 70, 054320 (2004).

    Article  ADS  Google Scholar 

  35. J. S. McCarthy, I. Sick, and R. R. Whitney, Phys. Rev. C 15, 1396 (1977).

    Article  ADS  Google Scholar 

  36. L. R. Suelzle, M. R. Yearian, and H. Crannell, Phys. Rev. 162, 992 (1967).

    Article  ADS  Google Scholar 

  37. J. A. Jansen, R. Th. Peerdeman, and C. De Vries, Nucl. Phys. A 188, 337 (1972).

    Article  ADS  Google Scholar 

  38. T. Stovall, J. Goldemberg, and D. B. Isabelle, Nucl. Phys. 86, 225 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed N. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, A.N. Study of the Halo Structure for Some Light Neutron-Rich Nuclei Using the Cosh Potential. Phys. Atom. Nuclei 83, 811–819 (2020). https://doi.org/10.1134/S1063778820660023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820660023

Navigation