Skip to main content
Log in

The Origin of Short-Time Variations in Cosmic-Ray Intensity

  • Physics of Gas Discharge and Plasma
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

It is well known today that a continuous stream of highly ionized plasma is emitted from the Sun’s surface. This plasma is called the solar wind and consists of protons, electrons, and light nuclei. The solar wind pushes the solar magnetic field into interplanetary space to form the interplanetary magnetic field. The interplanetary magnetic field is a dynamical system that depends on the solar cycle and the Sun’s rotation phase. Thus, the Solar System is a natural plasma physics laboratory with an enormous multitude of different effects showing the current state of the system. By recording cosmic-ray fluxes, one can study the behavior of the interplanetary magnetic field and obtain information about processes that occur both on the Sun’s surface and throughout the Solar System. The main short-time variations in cosmic-ray intensity include the 27-day variations and the Forbush decreases. These variations are caused by complex solar plasma structures, which are generated by different processes on the Sun’s surface and propagate through space in a wide range of velocities. Cosmic-ray fluxes recorded with the PAMELA magnetic spectrometer on board the Resurs DK1 satellite in 2006–2016 are used to show some examples of cosmic-ray variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Hundhausen, Coronal Expansion and Solar Wind (Springer, Berlin, 1972).

    Book  Google Scholar 

  2. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, Berlin, 2016).

    Book  Google Scholar 

  3. J. O. Mathew and J. F. Robert, Liv. Rev. Sol. Phys. 10 (5), 52 (2013).

    Google Scholar 

  4. G. H. Jones, A. Rees, et al., Geophys. Rev. Lett. 29 (1520), 11 (2002).

    Google Scholar 

  5. J. T. Gosling and J. V. Pizzo, Space Sci. Rev. 89, 21 (1999).

    Article  ADS  Google Scholar 

  6. Y. M. Wang and N. R. Sheeley, Jr., Astrophys. J. 355, 726 (1990).

    Article  ADS  Google Scholar 

  7. D. J. McComas, H. A. Elliott, N. A. Schwadron, et al., Geophys. Rev. Lett. 30, 1517 (2003).

    Article  ADS  Google Scholar 

  8. J. V. Pizzo, J. Geophys. Res. 94, 5405 (1991).

    Article  ADS  Google Scholar 

  9. Max Plank Institute for Solar System Research. https://www2.mps.mpg.de/en/aktuelles/pressenotizen/pressenotiz_20081127.html.

  10. P. Picozza, A. M. Galper, et al., Astropart. Phys. 27, 296 (2007).

    Article  ADS  Google Scholar 

  11. N. Gopalswamy, in Proceedings of the 7th International Workshop 2011 (Austr. Acad. Sci. Press, 2011), p. 325.

  12. P. F. Chen, Liv. Rev. Sol. Phys. 8 (1), 1 (2011).

    Google Scholar 

  13. I. Troitskaya and A. Mayorov, in Proceedings of the 26th Extended European Cosmic Ray Symposium and 35th Russian Cosmic Ray Conference, 2018, Barnaul, Russia.

  14. S. B. Pikelner, Fundamentals of Cosmic Electrodynamics (Fizmatlit, Moscow, 1961; Springer, Berlin, 1994).

    Google Scholar 

  15. D. F. Webb and T. A. Howard, Liv. Rev. Sol. Phys. 9, A3 (2012). https://doi.org/10.12942/lrsp-2012-3

    Google Scholar 

  16. H. V. Cane, Space Sci. Rev. 93, 55 (2000).

    Article  ADS  Google Scholar 

  17. T. H. Zurbuchen and I. G. Richardson, Space Sci. Rev. 123, 31 (2006).

    Article  ADS  Google Scholar 

  18. I. G. Richardson and H. V. Cane, J. Geophys. Res. 100, 397 (1995).

    Article  Google Scholar 

  19. T. L. Garrard, A. J. Davis, et al., Space Sci. Rev. 86, 649 (1998).

    Article  ADS  Google Scholar 

  20. I. A. Lagoida, S. A. Voronov, and V. V. Mikhailov, in Proceedings of the 26th Extended European Cosmic Ray Symposium and 35th Russian Cosmic Ray Conference, 2018, Barnaul, Russia.

  21. R. Munini, M. Boezio, A. Bruno, et al., Astrophys. J. 853, A76 (2018). https://doi.org/10.3847/1538-4357/aaa0c8

    Article  ADS  Google Scholar 

  22. I. G. Usoskin, A. Gil, G. A. Kovaltsov, et al., J. Geophys. Res. Space Phys. 122, 3875 (2017). https://doi.org/10.1002/2016JA023819

    Article  ADS  Google Scholar 

  23. H. Moraal, Space Sci. Rev. 176, 299 (2011).

    Article  ADS  Google Scholar 

  24. J. R. Jokipii, Astrophys. J. 146, 480 (1966).

    Article  ADS  Google Scholar 

  25. A. Shalci, Nonlinear Cosmic Ray Diffusion Theories (Springer, Berlin, 2009).

    Book  Google Scholar 

  26. J. R. Jokipii, H. Levy, and W. B. Hubbard, Astrophys. J. 213, 861 (1977).

    Article  ADS  Google Scholar 

  27. P. A. Isenberg and J. R. Jokipii, Astrophys. J. 234, 746 (1979).

    Article  ADS  Google Scholar 

  28. R. A. Burger and D. J. Visser, Astrophys. J. 725, 1366 (2010).

    Article  ADS  Google Scholar 

  29. E. N. Parker, Planet. Space Sci. 13, 9 (1965).

    Article  ADS  Google Scholar 

  30. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers (Tata McGraw-Hill, New Delphi, 2015).

    Google Scholar 

  31. M. S. Potgieter and D. Bisschoff, Astrophys. Space Sci. 361, 48 (2016).

    Article  ADS  Google Scholar 

  32. L. M. M. L. Batalha, PhD Thesis (Inst. Super. Tecn., Univ. Tecn. de Lisboa, 2012).

  33. R. Du Toit Strauss and E. Frederic, Space Sci. Rev. 212, 151 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by project no. MK-6160.2018.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lagoyda.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2018, published in Yadernaya Fizika i Inzhiniring, 2018, Vol. 9, No. 5, pp. 470–480.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagoyda, I.A., Voronov, S.A. & Mikhailov, V.V. The Origin of Short-Time Variations in Cosmic-Ray Intensity. Phys. Atom. Nuclei 82, 1537–1546 (2019). https://doi.org/10.1134/S1063778819120184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819120184

Keywords

Navigation