Skip to main content
Log in

Origin of the Short-Term Variations of the Cosmic Ray Flux

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Detection of cosmic ray fluxes makes it possible to study dynamics of the interplanetary magnetic field and gain information about processes that occur both on the solar surface and in the entire Solar system. The main variations in the cosmic ray intensity are 27-day variations and Forbush effects. These variations are caused by complex spatial solar-plasma formations resulting from various processes on the solar surface and propagating in space with widely varying velocities. The data recorded by the PAMELA magnetic spectrometer on board the Resurs-DK1 satellite in 2006–2016 are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. J. Hundhausen, Coronal Expansion and Solar Wind (Springer, Berlin, 1972).

    Book  Google Scholar 

  2. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, Berlin, 2016).

    Book  Google Scholar 

  3. J. O. Mathew and R. J. Forsyth, “The heliospheric magnetic field,” Liv. Rev. Sol. Phys. 10, 52 (2013).

    Google Scholar 

  4. G. H. Jones, A. Rees, A Balogh., and R.J. Forsyth, “The draping of heliospheric magnetic fields upstream of coronal mass ejecta,” Geophys. Res. Lett. 29 (11), 15-1 (2002).

    Google Scholar 

  5. J. T. Gosling and J. V. Pizzo, “Formation and evolution of CIRs and their 3-D structure,” Space Sci. Rev. 89, 21 (1999).

    Article  ADS  Google Scholar 

  6. Y. M. Wang and N. R. Sheeley, Jr., “Solar wind speed and coronal flux tube expansion,” Astrophys. J. 355, 726 (1990)

    Article  ADS  Google Scholar 

  7. D. J. McComas, H. A. Elliott, N. A. Schwadron, J. T. Gosling, R. M. Skoug, and B. E. Goldstein, “Wind around solar maximum,” Geophys. Res. Lett. 30 (10), 24-1 (2003).

    Article  Google Scholar 

  8. J. V. Pizzo, “The evolution of corotating stream fronts near the ecliptic plane in the inner solar system,” J. Geophys. Res. 96, 5405 (1991).

    Article  ADS  Google Scholar 

  9. Max Plank Institute for Solar System Research. https://www2.mps.mpg.de/en/aktuelles/pressenotizen/ pressenotiz_20081127.html

  10. P. Picozza et al. (PAMELA Collab.), “PAMELA—a payload for antimatter matter exploration and light-nuclei astrophysics,” Astropart. Phys. 27, 296 (2007).

    Article  ADS  Google Scholar 

  11. N. Gopalswamy, “Coronal mass ejections and solar radio emissions,” in Proceedings of the 7th International Workshop, Graz, Austria, September 15–17,2010, Ed. by H.O. Rucker, W.S. Kurth, P. Louarn, and G. Fischer (Austrian Acad. Sci. Press, Vienna, 2011), p. 325–342.

  12. P. F. Chen, “Coronal mass ejections: Models and their observational basis,” Liv. Rev. Sol. Phys. 8, 1 (2011).

    Google Scholar 

  13. S. B. Pikelner, Fundamentals of Cosmic Electrodynamics (Fizmatlit, Moscow, 1961) [in Russian]

    Google Scholar 

  14. D. F. Webb and T. A. Howard, “Coronal mass ejections: Observations,” Liv. Rev. Sol. Phys. 9, 27 (2012).

    Google Scholar 

  15. H. V. Cane, “Coronal mass ejections and Forbush decreases,” Space Sci. Rev. 93, 55 (2000).

    Article  ADS  Google Scholar 

  16. D. Alexander, T. H. Zurbuchen, and I. G. Richardson, “A brief history of CME science,” Space Sci. Rev. 123, 3 (2006).

    Article  ADS  Google Scholar 

  17. I. G. Richardson and H. V. Cane, “Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta,” J. Geophys. Res. 100, 397 (1995).

    Article  Google Scholar 

  18. T. L. Garrard, A. J. Davis, J. S. Hammond, and S. R. Sears, “The ACE science center,” Space Sci. Rev. 86, 649 (1998).

    Article  ADS  Google Scholar 

  19. R. Munini et al. (PAMELA Collab.), “Evidence of energy and charge sign dependence of the recovery time for the 2006 December Forbush event measured by the PAMELA experiment,” Astrophys. J. 853, 6 (2018).

    Article  Google Scholar 

  20. I. G. Usoskin, A. Gil, G. A. Kovaltsov, A. L. Mishev, and V. V. Mikhailov, “Heliospheric modulation of cosmic rays during the neutron monitor era: Calibration using PAMELA data for 2006–2010,” J. Geophys. Res. Space Phys. 122, 3875 (2017).

    Article  ADS  Google Scholar 

  21. H. Moraal, “Cosmic-ray modulation equations,” Space Sci. Rev. 176, 299 (2011).

    Article  ADS  Google Scholar 

  22. J. R. Jokipii, “Cosmic-ray propagation. I. Charged particles in a random magnetic field,” Astrophys. J. 146, 480 (1966).

    Article  ADS  Google Scholar 

  23. A. Shalci, Nonlinear Cosmic Ray Diffusion Theories (Springer, Berlin, 2009).

    Book  Google Scholar 

  24. J. R. Jokipii, H. Levy, and W. B. Hubbard, “Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation,” Astrophys. J. 213, 861 (1977).

    Article  ADS  Google Scholar 

  25. P. A. Isenberg and J. R. Jokipii, “Gradient and curvature drifts in magnetic fields with arbitrary spatial variation,” Astrophys. J. 234, 746 (1979).

    Article  ADS  Google Scholar 

  26. R. A. Burger and D. J. Visser, “Reduction of drift effects due to solar wind turbulence,” Astrophys. J. 725, 1366 (2010).

    Article  ADS  Google Scholar 

  27. E. N. Parker, “The passage of energetic charged particles through interplanetary space,” Planet. Space Sci. 13, 9 (1965).

    Article  ADS  Google Scholar 

  28. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers (Tata McGraw-Hill, New Delhi, 2015).

    Google Scholar 

  29. M. S. Potgieter and D. Bisschoff, “New local interstellar spectra for protons, helium and carbon derived from PAMELA and Voyager 1 observations,” Astrophys. Space Sci. 361, 48 (2016).

    Article  ADS  Google Scholar 

  30. L. M. M. L. Batalha, “Solar modulation effects on cosmic rays. Modelization with force-field approximation, 1D and 2D numerical approaches and characterization with AMS-02 proton fluxes,” PhD thesis (Instituto Superior Tecnico, Universidade Tecnico de Lisboa, 2012).

  31. R. Du Toit Strauss and E. Frederic, “A hitch-hiker’s guide to stochastic differential equations. Solution methods for energetic particle transport in space physics and astrophysics,” Space Sci. Rev. 212, 151 (2017).

    Article  Google Scholar 

Download references

Funding

The work was supported by grant MK-6160.2018.2 and the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lagoida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagoida, I.A., Voronov, S.A. & Mikhailov, V.V. Origin of the Short-Term Variations of the Cosmic Ray Flux. Phys. Part. Nuclei 50, 826–835 (2019). https://doi.org/10.1134/S1063779619060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619060054

Navigation