Skip to main content
Log in

Multilevel System for Protecting the Cryogenic Target during Its Delivery to the Focus of High-Power Laser Facility at High Repetition Rate

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An urgent issue in research of inertial confinement fusion (ICF) is the development of the scientific, engineering, and technological base to settle the problem of quality protection of the fuel layer during the high repetition rate delivery of a cryogenic fuel target (CFT) to the focus of a high-power laser facility or ICF reactor. A concept of the multilevel system of CFT protection developed at the Lebedev Physical Institute of the Russian Academy of Sciences is discussed. The concept includes possible ways of integration of the latest developments in the area of formation of the stable ultrafine fuel structure and also the application of external methods of CFT protection such as the (cryogenic and/or metallic) CFT external coatings, the profiling of a target nest inside the sabot (CFT carrier), and the noncontact CFT delivery using a hybrid accelerator based on the effect of quantum levitation of high-temperature superconductors in a magnetic field. The results obtained during the theoretical and experimental simulation made it possible to transfer from the stage of conceptualization to the stage of engineering implementation of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Aleksandrova, E. R. Koresheva, O. N. Krokhin, and I. E. Osipov, Vopr. At. Nauki Tekh., Ser.: Ter-moyad. Sintez 38 (1), 57 (2015).

    Google Scholar 

  2. I. V. Aleksandrova and E. R. Koresheva, High Power Laser Sci. Eng. 5, 1 (2017).

    Article  Google Scholar 

  3. I. V. Aleksandrova, A. A. Belolipetskiy, E. R. Koresheva, and S. M. Tolokonnikov, Laser Part. Beams 26, 643 (2008).

    Article  ADS  Google Scholar 

  4. I. V. Aleksandrova, A. A. Belolipetskiy, E. R. Koresheva, et al., J. Russ. Laser Res. 29, 419 (2008).

    Article  Google Scholar 

  5. I. V. Aleksandrova, E. R. Koresheva, I. E. Osipov, et al., Fusion Sci. Technol. 63, 106 (2013).

    Article  Google Scholar 

  6. I. V. Aleksandrova, E. R. Koresheva, E. L. Koshelev, and I. E. Osipov, Plasma Fusion Res. 8, 3404052 (2013).

    Article  ADS  Google Scholar 

  7. I. V. Aleksandrova, E. R. Koresheva, E. L. Koshelev, et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 39 (1), 29 (2016).

    Google Scholar 

  8. I. V. Aleksandrova, A. A. Akunets, E. R. Koresheva, et al., in Proceedings of the 34th European Conference on Laser Interaction with Matter, Moscow, Russia, Sept. 18–23, 2016. http://plasma.mephi.ru/ru/uploads/files/con-ferences/ECLIM2016/Presentations/ECLIM_2016_Poster_Timasheva%20reporter.pdf.

    Google Scholar 

  9. I. V. Aleksandrova, A. A. Akunets, E. R. Koresheva, et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 40 (1), 49 (2017).

    Google Scholar 

  10. I. V. Aleksandrova and A. A. Akunets, et al., J. Russ. Laser Res. 38, 249 (2017).

    Article  Google Scholar 

  11. I. V. Aleksandrova, E. L. Koshelev, A. I. Nikitenko, et al., J. Russ. Laser Res. 39, 140 (2018).

    Article  Google Scholar 

  12. E. I. Valmianski, R. W. Petzoldt, and N. B. Alexander, Fusion Sci. Technol. 43, 346 (2003).

    Article  Google Scholar 

  13. R. Tsuji, Fusion Sci. Technol. 43, 327 (2003).

    Article  Google Scholar 

  14. I. E. Osipov, E. R. Koresheva, G. D. Baranov, et al., in Inertial Fusion Science and Application: State of the Art 2001 (Elsevier, 2002), p. 810.

    Google Scholar 

  15. E. R. Koresheva, I. V. Aleksandrova, I. E. Osipov, et al., Fusion Sci. Technol. 43, 290 (2003).

    Article  Google Scholar 

  16. E. R. Koresheva, in Proceedigns of the 2nd IAEA TM on Physics and Technology of Inertial Fusion Energy Targets and Chambers, San Diego, CA, June 17–19, 2002. http://aries.ucsd.edu/LIB/MEETINGS.

    Google Scholar 

  17. I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, et al., J. Phys. D: Appl. Phys. 37, 1163 (2004).

    Article  ADS  Google Scholar 

  18. E. H. Stefens, A. Nikroo, D. T. Goodin, and R. W. Petzoldt, Fusion Sci. Technol. 43, 346 (2003).

    Article  Google Scholar 

  19. E. R. Koresheva, I. E. Osipov, and I. V. Aleksandrova, Laser Part. Beams 23, 563 (2005).

    Article  ADS  Google Scholar 

  20. I. V. Aleksandrova, E. R. Koresheva, E. L. Koshelev, et al., Report on 41st International Conference on Plasma Physics and Controlled Thermonuclear Synthesis, Zvenigorod, Russia, Feb. 10–14, 2014.

    Google Scholar 

  21. I. V. Aleksandrova, E. R. Koresheva, and I. E. Osipov, Report on 42nd International Conference on Plasma Physics and Controlled Thermonuclear Synthesis, Zvenigorod, Rossiya, Feb. 9–13, 2015.

    Google Scholar 

  22. S. Nakai and J. Miley, Physics of High Power Laser and Matter Interactions (Word Scientific, Singapore, 1992).

    Google Scholar 

  23. V. I. Myachenkov and V. P. Mal’tsev, Methods and Algorithms for Calculating the Spatial Structures on the EU Computer (Mashinostroenie, Moscow, 1984) [in Russian].

    Google Scholar 

  24. V. I. Myachenkov, A. V. Chekanin, and G. N. Ol’shanskaya, Automation of Design and Strength Calculations of Thin-Walled Axisymmetric Structures (KIPR-IBM 3.0) (MGTU Stankin, Moscow, 2001) [in Russian].

    Google Scholar 

  25. S. K. Godunov, Usp. Mat. Nauk 16, 171 (1961).

    Google Scholar 

  26. D. T. Goodin, N. B. Alexander, L. C. Brown, et al., IAEA-TECDOC-1466 (Int. Atomic Energy Agency, Vienna, 2005).

    Google Scholar 

  27. I. V. Aleksandrova, E. R. Koresheva, E. L. Koshelev, et al., in Proceedings of the 34th European Conference on Laser Interaction with Matter, Moscow, Russia, Sept. 18–23, 2016. http://plasma.mephi.ru/ru/uploads/files/conferences/ECLIM2016/Presentations/Koresheva%20-%20ECLIM%202016.pdf.

    Google Scholar 

  28. I. V. Aleksandrova, A. A. Akunets, et al., in Proceedings of the IAEA 8th Technical Meeting on Physics and Technology of Inertial Fusion Energy Chambers and Targets, Tashkent, Uzbekistan, March 8–9, 2018. https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/IFE/2018/Presentations/Koresheva.pdf.

    Google Scholar 

  29. I. V. Aleksandrova, E. R. Koresheva, E. L. Koshelev, et al., in 45th International Conference on Plasma Physics and Controlled Thermonuclear Synthesis, Zvenigorod, Russia, Apr. 2–6, 2018. http://www.fpl.gpi.ru/Zvenig-orod/XLV/I.html#Sekcija%20I.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 15-02-02497), by the International Atomic Energy Agency (project no. 20344), and within the government assignment of the Lebedev Physical Institute according to theme no. 4 “Condensed State Physics: New Materials, Molecular and Solid-State Structures of Nanophotonics, Nanoelectronics, and Spintronics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Koshelev.

Additional information

Russian Text © The Author(s), 2018, published in Voprosy Atomnoi Nauki i Tekhniki, Seriya: Termoyadernyi Sintez, 2018, Vol. 41, No. 4, pp. 73–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, I.V., Koresheva, E.R. & Koshelev, E.L. Multilevel System for Protecting the Cryogenic Target during Its Delivery to the Focus of High-Power Laser Facility at High Repetition Rate. Phys. Atom. Nuclei 82, 1060–1071 (2019). https://doi.org/10.1134/S1063778819070019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819070019

Keywords

Navigation