Skip to main content
Log in

HTSC Maglev Ring System for Noncontact Acceleration and Injection of Cryogenic Fuel Targets into the Laser Focus of an ICF Facility

  • INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Creation of an efficient system for the frequent delivery of cryogenic fuel targets (CFT) to the focus of a powerful laser facility is one of the key directions of research in inertial confinement fusion (ICF). The paper discusses prospects for the creation of a ring magnetic system based on the contactless acceleration of a levitating CFT carrier made of high-temperature type II superconductors (HTSC), up to specified injection velocities of 200–400 m/s. For this purpose, the temperature dependence of the magnetic moment of HTSC tapes in the range ΔT = 10–92 K was studied, prototype experiments on the acceleration of HTSC carriers at T ~ 80 K due to an external action on them with a frequency of ~1 Hz were carried out, and the speed for the stall of HTSC carriers from a circular trajectory were calculated. The calculation results are in good agreement with the experiment, which makes it possible to estimate the parameters of the ring magnetic accelerator for the operating temperature of the CFT injector T ~ 17 K. It is shown that the method proposed is promising for the creation of systems for noncontact delivery of CFT based on the principles of levitation and subsequent injection of CFTs into the center of the ICF reactor chamber at the required speed. The results of planning a new series of experiments are presented: acceleration of an HTSC carrier followed by injection of a surrogate target into the chamber of the GARPUN (LPI) KrF laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Goodin, D.T., Alexander, N.B., Besenbruch, G.E., et al., Phys. Plasmas, 2006, vol. 13, p. 056305.

  2. Bodner, S.E., Colombant, D.G., Schmitt, A.J., and Klapisch, M., Phys. Plasmas, 2000, vol. 7, p. 2298.

    Article  ADS  Google Scholar 

  3. Goodin, D.T., Alexander, N.B., Brown, L.C., et al., Nucl. Fusion, 2004, vol. 44, no. 12, p. S254.

    Article  Google Scholar 

  4. Baranov, G.D., Koresheva, E.R., Listratov, V.I., et al., USSR Author’s Certificate 1586437, 1990.

  5. Petzoldt, R.W., Goodin, D., and Siegel, N., Fusion Technol., 2000, vol. 38, no. 1, p. 22.

    Article  ADS  Google Scholar 

  6. Koresheva, E.R. and Osipov, I.E., USSR Author’s Certificate 1820757, 1992.

  7. Yoshida, H. and Yamahira, Y., Laser Original, 2003, vol. 343.

    Google Scholar 

  8. Miles, R., Spaeth, M., Manes, K., et al., Fusion Sci. Technol., 2011, vol. 60, p. 61.

    Article  ADS  Google Scholar 

  9. Kreutz, R., Fusion Technol., 1988, vol. 8, p. 2708.

    Article  ADS  Google Scholar 

  10. Aleksandrova, I.V. and Koresheva, E.R., High Power Laser Sci. Eng., 2017, vol. 5, no. 2, p. e11.

  11. Koresheva E.R., Aleksandrova I.V., Akunets A.A., et al., RF Patent 2635660, 2017.

  12. Aleksandrova, I.V., Akunets, A.A., Koresheva, E.R., and Koshelev, E.L., RF Patent 2727925, 2020.

  13. Aleksandrova, I.V., Akunets, A.A., Koresheva, E.R., and Koshelev, E.L., RF Patent 2769777, 2022.

  14. Aleksandrova, I.V., Koresheva, E.R., and Koshelev, E.L., Nucl. Fusion, 2021, vol. 61, p. 126009.

  15. Aleksandrova, I.V., Koresheva, E.R., and Koshelev, E.L., High Power Lasers Sci. Eng., 2022, vol. 10, p. e11.

  16. Antonov, Yu.F. and Zaitsev, A.A., Magnitolevitatsionnaya transportnaya tekhnologiya (Magnetic Levitation Transport Technology), Moscow: Fizmatlit, 2014.

  17. Lee, S., Petrykin, V., Molodyk, A., et al., Supercond. Sci. Technol., 2014, vol. 27, p. 044022.

  18. Ginzburg, V.L. and Andryushin, E.A., Sverkhprovodimost’ (Superconductivity), Moscow: Al’fa-M, 2006.

  19. Landau, L.D. and Lifshitz E.M., Teoreticheskaya fizika. Elektrodinamika sploshnykh sred (Theoretical Physics. Electrodynamics of Continuous Media), Moscow: Nauka, 1982, vol. 8.

  20. Gokhfel’d, D.M., Koblishka, M.R., and Koblishka-Veneva A., Fiz. Met. Metalloved., 2020, vol. 12, p. 1026.

    Google Scholar 

  21. Deryagina, I.L., Popova, E.N., and Romanov, E.P., Vestn. Omsk. Univ., 2013, vol. 2, p. 57.

    Google Scholar 

  22. Muzzi, L., De Marzi, G., Zignani, C.F., et al., IEEE Trans. Appl. Supercond., 2011, vol. 21, p. 3132.

    Article  ADS  Google Scholar 

  23. Basov, N.G., Bakaev, V.G., Grigor’yants, E.A., et al., Sov. J. Quantum Electron., 1991, vol. 21, no. 8, p. 816.

    Article  ADS  Google Scholar 

  24. Zvorykin, V.D., Levchenko, A.O., and Ustinovskii, N.N., Quantum Electron., 2010, vol. 40, no. 5, p. 381.

    Article  ADS  Google Scholar 

  25. Zvorykin, V.D., Goncharov, S.A., Ionin A.A., et al., Quantum Electron., 2017, vol. 47, no. 4, p. 319.

    Article  ADS  Google Scholar 

  26. Zvorykin, V.D., Didenko, N.V., Ionin, A.A., et al., Laser Part. Beams, 2007, vol. 25, no. 3, p. 435.

    Article  ADS  Google Scholar 

  27. Shang, W.L., Betti, R., Hu, S.X., et al., Phys. Rev. Lett., 2017, vol. 119, p. 195001.

Download references

Funding

This work was carried out as part of the state order to the Lebedev Physical Institute, Russian Academy of Sciences, and the IAEA (project no. 24154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Koresheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, I.V., Akunets, A.A., Gavrilkin, S.Y. et al. HTSC Maglev Ring System for Noncontact Acceleration and Injection of Cryogenic Fuel Targets into the Laser Focus of an ICF Facility. Bull. Lebedev Phys. Inst. 50 (Suppl 5), S560–S571 (2023). https://doi.org/10.3103/S1068335623170025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623170025

Keywords:

Navigation