Skip to main content
Log in

Proton induced fission of 232Th at intermediate energies

  • Fission Physics
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The mass-energy distributions and cross sections of proton-induced fission of 232Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Rubchenya, Phys. Rev. C 75, 054601 (2007).

    Article  ADS  Google Scholar 

  2. NuPECC Long Range Plan 2010. http://www.nupecc.org.

  3. Final Report of the EURISOL Design Study 2005–2009 (Nov. 2009). http://www.eurisol.org.

  4. C. D. Bowma et al., Nucl. Instrum. Methods Phys. Res. A 320, 336 (1992).

    Article  ADS  Google Scholar 

  5. M. Huhta et al., Phys. Lett. B 405, 230 (1998).

    Article  ADS  Google Scholar 

  6. J. Randrup, P. Moller, and A. J. Sierk, Phys. Rev. C 84, 034613 (2011)

    Article  ADS  Google Scholar 

  7. J. Randrup and P. Moller, Phys. Rev. C 88, 064606 (2013).

    Article  ADS  Google Scholar 

  8. Y. Aritomo and S. Chiba, Phys. Rev. C 88, 044614 (2013).

    Article  ADS  Google Scholar 

  9. B. Jurado and K.-H. Schmidt. http://www.khs-erzhausen. de/GEF.html.

  10. http://www.inp.kz/laboratoryrus/lpdpyf.php.

  11. V. A. Rubchenya et al., Nucl. Phys. A 734, 253 (2004).

    Article  ADS  Google Scholar 

  12. V. A. Rubchenya et al., Nucl. Instrum. Methods Phys. Res. A 463, 653 (2001).

    Article  ADS  Google Scholar 

  13. S. I. Mulgin, S. V. Zhdanov, N. A. Kondratiev, K. V. Kovalchuk, and A. Ya. Rusanov, Nucl. Phys. A 824, 1 (2009).

    Article  ADS  Google Scholar 

  14. E. M. Kozulin et al., Instrum. Exp. Tech. 51, 44 (2008).

    Article  Google Scholar 

  15. S. Mouatassim et al., Nucl. Instrum. Methods Phys. Res. A 359, 330 (1995), Nucl. Instrum. Methods Phys. Res. A 365, 446 (1995).

    Article  Google Scholar 

  16. P. Desesquelles et al., Nucl. Instrum. Methods Phys. Res. A 307, 366 (1991).

    Article  ADS  Google Scholar 

  17. N. A. Kondrat’ev, S. I. Mulgin, V. N. Okolovich, and A. Ya. Rusanov, Prib. Tekh. Eksp., No. 2, 62 (1990).

    Google Scholar 

  18. S. I. Mulgin, V. N. Okolovich, and S. V. Zhdanov, Nucl. Instrum. Methods Phys. Res. A 388, 254 (1997).

    Article  ADS  Google Scholar 

  19. V. V. Pashkevich, Nucl. Phys. A 169, 175 (1971), Nucl. Phys. A 477, 1 (1988).

    Article  Google Scholar 

  20. U. Brosa, S. Grossmann, and A. Müller, Phys. Rep. 197, 167 (1990).

    Article  ADS  Google Scholar 

  21. V. A. Rubchenya and J. Aysto, Eur. Phys. J. A 48, 44 (2012).

    Article  ADS  Google Scholar 

  22. P. Siegler, F.-J. Hambsch, S. Obersted, and J. P. Theobald, Nucl. Phys. A 594, 45 (1995).

    Article  ADS  Google Scholar 

  23. S. I. Mulgin, V. N. Okolovich, and S. V. Zhdanov, Phys. Lett. B 462, 29 (1999).

    Article  ADS  Google Scholar 

  24. I. V. Pokrovsky et al., Phys. Rev. C 62, 014615 (2000).

    Article  ADS  Google Scholar 

  25. K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).

    Article  ADS  Google Scholar 

  26. J. P. Unik et al., in Proceedings of the Symposium on Physics and Cemistry of Fission, New York, August 13–17, 1973 (IAEA, 1974), Vol. 2, p. 20.

    Google Scholar 

  27. V. A. Rubchenya and J. Austo, Nucl. Phys. A 701, 127 (2002).

    Article  ADS  Google Scholar 

  28. H. A. Tewes, Phys. Rev. 98, 25 (1955).

    Article  ADS  Google Scholar 

  29. H. Kudo, H. Muramatsu, H. Nakahara, et al., Phys. Rev. C 25, 3011 (1982).

    Article  ADS  Google Scholar 

  30. A. N. Smirnov, I. Yu. Gorshkov, A. V. Prokofiev, and V. P. Eismont, in Proceedings of the 21st International Sympoisum on Nuclear Physics, Castle Gaussig, Germany, Nov. 4-8, 1991 (World Scientific, Singapore, 1992), p. 214.

    Google Scholar 

  31. E. M. Kozulin, A. Ya. Rusanov, and G. N. Smirenkin, Phys. At. Nucl. 56, 166 (1993).

    Google Scholar 

  32. I. Nishinaka et al., Phys. Rev. C 70, 014609 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Gikal.

Additional information

Published in Russian in Yadernaya Fizika i Inzhiniring, 2015, Vol. 6, No. 5–6, pp. 205–214.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gikal, K.B., Kozulin, E.M., Bogachev, A.A. et al. Proton induced fission of 232Th at intermediate energies. Phys. Atom. Nuclei 79, 1367–1374 (2016). https://doi.org/10.1134/S1063778816090040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816090040

Keywords

Navigation