Skip to main content
Log in

Nuclear symmetry energy in terms of single-nucleon potential and its effect on the proton fraction of β-stable npeμ matter

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Momentum and density dependence of single-nucleon potential u τ (k, ρ, β) is analyzed using a density dependent finite range effective interaction of the Yukawa form. Depending on the choice of the strength parameters of exchange interaction, two different trends of the momentum dependence of nuclear symmetry potential are noticed which lead to two opposite types of neutron and proton effective mass splitting. The 2nd-order and 4th-order symmetry energy of isospin asymmetric nuclear matter are expressed analytically in terms of the single-nucleon potential. Two distinct behavior of the density dependence of 2nd-order and 4th-order symmetry energy are observed depending on neutron and proton effective mass splitting. It is also found that the 4th-order symmetry energy has a significant contribution towards the proton fraction of β-stable npeμ matter at high densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  2. L.-W. Chen, C.M. Ko, and B.-A. Li, Phys. Rev. Lett. 94, 032701 (2005).

    Article  ADS  Google Scholar 

  3. M. B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009).

    Article  ADS  Google Scholar 

  4. M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. Lett. 102, 122502 (2009).

    Article  ADS  Google Scholar 

  5. J. B. Natowitz et al., Phys. Rev. Lett. 104, 202501 (2010).

    Article  ADS  Google Scholar 

  6. B.-A. Li., L.-W. Chen, and C. M. Ko, Phys. Rept. 464, 113 (2008).

    Article  ADS  Google Scholar 

  7. P. J. Siemens, Nucl. Phys. A 141, 225 (1970).

    Article  ADS  Google Scholar 

  8. C.-H. Lee, T. T. S. Kuo, G. Q. Li, and G. E. Brown, Phys. Rev. C 57, 3488 (1998).

    Article  ADS  Google Scholar 

  9. B.-J. Cai and L.-W. Chen, Phys. Rev.C 85, 024302 (2012).

    Article  ADS  Google Scholar 

  10. C. Xu, B.-A. Li, and L. W. Chen, Phys. Rev. C 82, 054607 (2010).

    Article  ADS  Google Scholar 

  11. L.-W. Chen, C.M. Ko, and B.-A. Li, Phys. Rev. C 82, 024321 (2010).

    Article  ADS  Google Scholar 

  12. Z. Xiao, B.-A. Li, L.-W. Chen, and M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).

    Article  ADS  Google Scholar 

  13. Z.-Q. Feng and G. M. Jin, Phys. Lett. B 683, 140 (2010).

    Article  ADS  Google Scholar 

  14. C. Xu and B.-A. Li, Phys. Rev. C 81, 044603 (2010).

    Article  ADS  Google Scholar 

  15. C.B. Das, S. DasGupta, C. Gale, and B. A. Li, Phys. Rev. C 67, 034611 (2003).

    Article  ADS  Google Scholar 

  16. E. N. E. van Dalen, C. Fuchs, and A. Faessler, Nucl. Phys.A 744, 227 (2004).

    Article  ADS  Google Scholar 

  17. S. Fritsch, N. Kaiser, and W. Weise, Nucl. Phys. A 750, 259 (2005).

    Article  ADS  Google Scholar 

  18. L.-W. Chen, C.M. Ko, and B.-A. Li, Phys.Rev. C 72, 064606 (2005).

    Article  ADS  Google Scholar 

  19. Z.-H. Li, L.-W. Chen, C. M. Ko, et al., Phys. Rev.C 74, 044613 (2006).

    Article  ADS  Google Scholar 

  20. R. B. Wiringa et al., Phys. Rev. C 38, 1010 (1988).

    Article  ADS  Google Scholar 

  21. M. Kutschera, Phys. Lett. B 340, 1 (1994).

    Article  ADS  Google Scholar 

  22. F. S. Zhang and L.-W. Chen, Chin. Phys. Lett. 18, 142 (2001).

    Article  ADS  Google Scholar 

  23. A.W. Steiner, Phys. Rev. C 74, 045808 (2006).

    Article  ADS  Google Scholar 

  24. L.-W. Chen, B.-J. Cai, C. M. Ko, et al., Phys. Rev.C 80, 014322 (2009).

    Article  ADS  Google Scholar 

  25. S. Chakraborty, B. Sahoo, and S. Sahoo, Int. J.Mod. Phys. E 21, 1250079 (2012).

    Article  ADS  Google Scholar 

  26. C. Xu, B.-A. Li, L.-W. Chen, and C. M. Ko, Nucl. Phys. A 865, 1 (2011).

    Article  ADS  Google Scholar 

  27. S. Chakraborty, B. Sahoo, and S. Sahoo, Nucl. Phys. A 912, 31 (2013).

    Article  ADS  Google Scholar 

  28. B. Behera, T. R. Routray, B. Sahoo, and R. K. Satpathy, Nucl. Phys. A 699, 770 (2002).

    Article  ADS  Google Scholar 

  29. B. Behera, T. R. Routray, A. Pradhan, et al., Nucl. Phys. A 753, 367 (2005).

    Article  ADS  Google Scholar 

  30. A.M. Lane, Nucl. Phys. 35, 676 (1962).

    Article  Google Scholar 

  31. Rong Chen et al., Phys. Rev. C 85, 024305 (2012) [arXiv: 1112.2936v3 [nucl-th]].

    Article  ADS  Google Scholar 

  32. B. Behera, T. R. Routray, A. Pradhan, et al., Nucl. Phys. A 794, 132 (2007).

    Article  ADS  Google Scholar 

  33. J. P. Blaizot, Phys. Rept. 64, 171 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  34. B. K. Agrawal and S. Shlomo, Phys. Rev. C 70, 014308 (2004).

    Article  ADS  Google Scholar 

  35. J. P. Blaizot, J. F. Berger, J. Decharge, et al., Nucl. Phys. A 591, 435 (1995).

    Article  ADS  Google Scholar 

  36. D. H. Youngblood, H. L. Clark, and Y.-W. Kui, Phys. Rev. Lett. 82, 691 (1999).

    Article  ADS  Google Scholar 

  37. W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 81, 1 (1966).

    Article  Google Scholar 

  38. K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316 (2003).

    Article  ADS  Google Scholar 

  39. K. A. Brueckner and J. Dabrowski, Phys. Rev. 134, B722 (1964).

    Article  ADS  Google Scholar 

  40. J. Dabrowski and P. Haensel, Phys. Lett. B 42, 163 (1972)

    Article  ADS  Google Scholar 

  41. Phys. Rev. C 7, 916 (1973).

  42. M. B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004).

    Article  ADS  Google Scholar 

  43. B.-A. Li and L.-W. Chen, Phys. Rev. C 72, 064611 (2005).

    Article  ADS  Google Scholar 

  44. D. V. Shetty, S. J. Yennello, and G. A. Souliotis, Phys. Rev. C 75, 034602 (2007).

    Article  ADS  Google Scholar 

  45. B. A. Li, Nucl. Phys. A 708, 365 (2002).

    Article  ADS  Google Scholar 

  46. B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).

    Article  ADS  Google Scholar 

  47. C.-H. Lee, T. T. S. Kuo, G. Q. Li, and G. E. Brown, Phys. Rev. C 57, 3488(1998).

    Article  ADS  Google Scholar 

  48. B. Liu et al., Phys. Rev. C 65, 045201(2002).

    Article  ADS  Google Scholar 

  49. J. R. Stone et al., Phys. Rev. C 68, 034324 (2003).

    Article  ADS  Google Scholar 

  50. B. A. Li, Nucl. Phys. A 681, 434c (2001).

    Article  ADS  Google Scholar 

  51. I. Bombaci, Isospin Physics in Heavy-Ion Reactions at Intermediate Energies, Eds. by B.-A. Li and W. U. Schröoder (Nova Science, New York, 2001), p. 35.

  52. D. T. Loan, N. H. Tan, D. T. Khoa, and J. Margueron, Phys. Rev. C 83, 065809 (2011) [arXiv: 1105.5222 [nucl-th]].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babita Sahoo.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B., Chakraborty, S. & Sahoo, S. Nuclear symmetry energy in terms of single-nucleon potential and its effect on the proton fraction of β-stable npeμ matter. Phys. Atom. Nuclei 79, 1–10 (2016). https://doi.org/10.1134/S1063778816010178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816010178

Keywords

Navigation