Skip to main content
Log in

A test for correction made to spin systematics for coupled band in doubly-odd nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Systematic Spin Assignments were generally made by using the argument that the energy of levels is a function of neutron number. In the present systematics, the excitation energy of the levels incorporated the effect of nuclear deformation and signature splitting. The nuclear deformation changes toward the mid-shell, therefore a smooth variation in the excitation energy of the levels is observed towards the mid-shell, that intended to make systematics as a function of neutron number towards the mid-shell. Another term “signature splitting” that push the energy of levels for odd- and even-spin sequences up and down, caused the different energy variation pattern for odd- and even-spin sequences. The corrections made in the spin systematics were tested for the known spins of various isotopic chain. In addition, the inconsistency in spin assignments made by the spin systematics and other methods of the configuration π h 11/2νh 11/2 band belonging to 112,114,116Cs, 126Pr, and 138Pr, as an example, was resolved by the correctionmade in the present spin systematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yunzuo Liu et al., Phys. Rev. C 52, 2514 (1995).

    Article  ADS  Google Scholar 

  2. J. R. B. Oliveira et al., Phys. Rev. C 39, 2250 (1989).

    Article  ADS  Google Scholar 

  3. J. F. Smith et al., Phys. Rev. C 63, 024319 (2001).

    Article  ADS  Google Scholar 

  4. P. T. Wady et al., Phys. Rev. C 85, 034329 (2012).

    Article  ADS  Google Scholar 

  5. Yunzuo Liu et al., Phys. Rev. C 54, 719 (1996).

    Article  ADS  Google Scholar 

  6. T. Koike et al., Phys. Rev. C 67, 044319 (2003).

    Article  ADS  Google Scholar 

  7. J. F. Smith et al., Phys. Rev. C 74, 034310 (2006).

    Article  ADS  Google Scholar 

  8. M. L. Li et al., Phys. Rev. C 75, 034304 (2007).

    Article  ADS  Google Scholar 

  9. D. J. Hartley et al., Phys. Rev. C 65, 044329 (2002).

    Article  ADS  Google Scholar 

  10. F. S. Stephens, Rev.Mod. Phys. 47, 43 (1975).

    Article  ADS  Google Scholar 

  11. R. Bengtsson et al., Nucl. Phys. A 389, 158 (1982).

    Article  ADS  Google Scholar 

  12. R. Bengtsson et al., Nucl. Phys. A 415, 189 (1984).

    Article  ADS  Google Scholar 

  13. I. Hamamoto, Phys. Lett. B 235, 221 (1990).

    Article  ADS  Google Scholar 

  14. P. Semmes and I. Ragnarsson, Report Presented at International Conference on High Spin Physics and Gamma-Soft Nuclei, Pittsburgh, PA, 1990.

    Google Scholar 

  15. K. Hara and Y. Sun, Nucl. Phys. A 531, 221 (1991).

    Article  ADS  Google Scholar 

  16. A. K. Jain and A. Goel, Phys. Lett. B 277, 233 (1992).

    Article  ADS  Google Scholar 

  17. K. Hara, Nucl. Phys. A 557, 449 (1993).

    Article  ADS  Google Scholar 

  18. N. Yoshida, H. Sagawa, and T. Otsuka, Nucl. Phys. A 567, 17 (1994).

    Article  ADS  Google Scholar 

  19. M. Matsuzaki, Phys. Lett. B 269, 23 (1991).

    Article  ADS  Google Scholar 

  20. G. Gangopadhyay et al., Eur. Phys. J. A 24, 173 (2005).

    Article  ADS  Google Scholar 

  21. C. M. Petrache et al., Phys. Rev.C 64, 044303 (2001).

    Article  ADS  Google Scholar 

  22. K. S. Krane, R. M. Steffen, and R. M. Wheeler, At. Data Nucl. Data Tables 11, 351 (1973).

    Article  ADS  Google Scholar 

  23. K. Starosta et al., Phys. Rev. C 62, 044309 (2000).

    Article  ADS  Google Scholar 

  24. C.-B. Moon et al., Nucl. Phys. A 730, 3 (2004).

    Article  ADS  Google Scholar 

  25. E. S. Paul et al., J. Phys. G 22, 653 (1996).

    Article  ADS  Google Scholar 

  26. R. Zheng et al., Phys. Rev. C 64, 014313 (2001).

    Article  ADS  Google Scholar 

  27. C. M. Petrache et al., Nucl. Phys. A 597, 106 (1996).

    Article  ADS  Google Scholar 

  28. C. M. Petrache et al., Nucl. Phys. A 603, 50 (1996).

    Article  ADS  Google Scholar 

  29. J. F. Smith et al., Phys. Lett. B 406, 7 (1997).

    Article  ADS  Google Scholar 

  30. C.-B. Moon et al., Nucl. Phys. A 696, 45 (2001).

    Article  ADS  Google Scholar 

  31. F. R. Xu, W. Satula, and R. Wyss, Nucl. Phys. A 669, 119 (2000).

    Article  ADS  Google Scholar 

  32. J.-Y. Zhang and P. Semmes, private communication.

  33. M. G. Procter et al., Phys. Rev. C 87, 014308 (2013).

    Article  ADS  Google Scholar 

  34. http://radware.phy.ornl.gov

  35. M. Sandzelius et al., Phys. Rev. Lett. 99, 022501 (2007).

    Article  ADS  Google Scholar 

  36. Jingbin Lu et al., Phys. Rev. C 62, 057304 (2000).

    Article  ADS  Google Scholar 

  37. B. Cederwall et al., Nucl. Phys. A 542, 454 (1992).

    Article  ADS  Google Scholar 

  38. J. F. Smith et al., Phys. Rev. C 58, 3237 (1998).

    Article  ADS  Google Scholar 

  39. J. F. Smith et al., Phys. Rev. C 73, 061303 (2006).

    Article  ADS  Google Scholar 

  40. T. Komatsubara et al., Nucl. Phys. A 557, 419c (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V. A test for correction made to spin systematics for coupled band in doubly-odd nuclei. Phys. Atom. Nuclei 78, 1001–1007 (2015). https://doi.org/10.1134/S1063778815080074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815080074

Keywords

Navigation