Skip to main content
Log in

Probabilities of delayed processes for nuclei involved in the r-process

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Delayed fission, along with induced and spontaneous fission, is responsible for the suppression of the production of superheavy elements both during the r-process and after its completion. Beta-decay strength functions are required for calculating delayed fission. In the present study, respective strength functions are calculated by relying on the theory of finite Fermi systems and by predominantly employing nuclear masses and fission barriers predicted by a generalized Thomas-Fermi model. The probabilities for delayed fission and for the emission of delayed neutrons are calculated for a number of isotopes. On the basis of calculations performed in order to determine the probabilities for delayed processes, it is shown that some of the delayed-fission probabilities calculated thus far were substantially overestimated. The application of these new results to calculating the r-process may change substantially both the r-process path and the yields of superheavy nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Howard and P. Möller, At. Data Nucl. Data Tables 25, 219 (1980).

    Article  ADS  Google Scholar 

  2. W. D. Myers and W. J. Swiatecki, Phys. Rev. C 60, 014606–1 (1999).

    Article  ADS  Google Scholar 

  3. A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 644, 389 (1998).

    Article  ADS  Google Scholar 

  4. P. A. Seeger, W. A. Fowler, and D. D. Clayton, Astrophys. J. Suppl. 97(11), 121 (1965).

    Article  ADS  Google Scholar 

  5. J. J. Cowan, F.-K. Thielemann, and J. W. Truran, Astrophys. J. 323, 543 (1987).

    Article  ADS  Google Scholar 

  6. J. J. Cowan, B. Pfeiffer, K.-L. Kratz, et al., Astrophys. J. 521, 194 (1999).

    Article  ADS  Google Scholar 

  7. Yu. S. Lyutostanskii, S. V. Malevannyi, I. V. Panov, et al., Sov. J. Nucl. Phys. 47, 780 (1988).

    Google Scholar 

  8. I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, Phys. At. Nucl. 72, 1026 (2009).

    Article  Google Scholar 

  9. I. Yu. Korneev and I. V. Panov, Astron. Lett. 37, 864 (2011).

    Article  ADS  Google Scholar 

  10. F.-K. Thielemann, J. Metzinger, and H. V. Klapdor, Z. Phys. A 309, 301 (1983).

    Article  ADS  Google Scholar 

  11. F.-K. Thielemann, A. G. W. Cameron, and J. J. Cowan, in Proceedings of the International Conference 50 Years with Nuclear Fission, Ed. by J. Behrens and A. D. Carlson (1989), p. 592.

  12. I. V. Panov and F.-K. Thielemann, Astron. Lett. 29, 510 (2003).

    Article  ADS  Google Scholar 

  13. I. V. Panov, E. Kolbe, B. Pfeiffer, et al., Nucl. Phys. A 747, 633 (2005).

    Article  ADS  Google Scholar 

  14. I. V. Panov, I. Yu. Korneev, T. Rauscher, et al., Astron. Astrophys. 513, A61 (2010).

    Article  ADS  Google Scholar 

  15. A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 679, 337 (2001).

    Article  ADS  Google Scholar 

  16. G. J. Wasserburg, M. Busso, and R. Gallino, Astrophys. J. 466, L109 (1996).

    Article  ADS  Google Scholar 

  17. I. V. Panov, C. Freiburghaus, and F.-K. Thielemann, Nucl. Phys. A 688, 587 (2001).

    Article  ADS  Google Scholar 

  18. D. K. Nadezhin and I. V. Panov, Astron. Lett. 33, 385 (2007).

    Article  ADS  Google Scholar 

  19. D. A. Ptitsyn and V. M. Chechetkin, Sov. Astron. Lett. 8, 322 (1982).

    ADS  Google Scholar 

  20. I. V. Panov and V. M. Chechetkin, Astron. Lett. 28, 476 (2002).

    Article  ADS  Google Scholar 

  21. H. Diehl and W. Greiner, Nucl. Phys. A 229, 29 (1974).

    Article  ADS  Google Scholar 

  22. V. P. Perelygin, N. H. Shadieva, S. P. Tretiakova, et al., Nucl. Phys. A 127, 577 (1969).

    Article  ADS  Google Scholar 

  23. K. Aleklett, G. Nyman, and G. Rudstam, Nucl. Phys. A 246, 425 (1975).

    Article  ADS  Google Scholar 

  24. K.-L. Kratz, W. Rudolph, H. Ohm, et al., Nucl. Phys. A 317, 335 (1979).

    Article  ADS  Google Scholar 

  25. V. G. Aleksankin, Yu. S. Lyutostanskii, and I. V. Panov, Sov. J. Nucl. Phys. 34, 804 (1981).

    Google Scholar 

  26. I. N. Borzov, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 584, 335 (1995).

    Article  ADS  Google Scholar 

  27. A. Staudt and H. V. Klapdor-Kleingrothaus, Nucl. Phys. A 549, 254 (1992).

    Article  ADS  Google Scholar 

  28. E. R. Hilf, H. V. Groote, and K. Takahashi, in Proceedings of the 3rd International Conference on Nuclei far from Stability, Corsica, 1976, CERN-76-13 (Geneva, 1976), p. 142.

  29. I. V. Panov, I. Yu. Korneev, T. Rauscher, and F.-K. Thielemann, Bull. Russ. Acad. Sci. Phys. 75, 484 (2011).

    Article  Google Scholar 

  30. Yu. S. Lyutostanskii, V. I. Lyashuk, and I. V. Panov, Bull. Acad. Sci.USSR, Phys. Ser. 54(11), 52 (1990).

    Google Scholar 

  31. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  32. W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 601, 141 (1996).

    Article  ADS  Google Scholar 

  33. P. Möller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

    Article  ADS  Google Scholar 

  34. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Intersci., New York, 1967, transl. 1st ed.)

    Google Scholar 

  35. Yu. V. Gaponov and Yu. S. Lyutostanskii, Sov. J. Part. Nucl. 12, 528 (1981); Sov. J. Nucl. Phys. 19, 33 (1974).

    Google Scholar 

  36. W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).

    Article  ADS  MATH  Google Scholar 

  37. T. Rauscher, F.-K. Thielemann, and K.-L. Kratz, Nucl. Phys. A 621, 331 (1997).

    Article  ADS  Google Scholar 

  38. Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables 61, 127 (1995).

    Article  ADS  Google Scholar 

  39. J. J. Cowan, F.-K. Thielemann, and J. W. Truran, Phys. Rep. 208, 267 (1991).

    Article  ADS  Google Scholar 

  40. V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967).

    Article  ADS  Google Scholar 

  41. O. Bohr and B. Mottelson, Nuclear Structure, vol. 2: Nuclear Deformations (Benjamin, New York, 1975; Mir,Moscow, 1977).

    Google Scholar 

  42. D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

    Article  ADS  MATH  Google Scholar 

  43. G. N. Smirenkin, IAEA-report INDC(CCP)-359 (1993).

  44. S. Bjornholm and J. E. Lynn, Rev. Mod. Phys. 52, 725 (1980).

    Article  ADS  Google Scholar 

  45. D. J. Dean, S. E. Koonin, K. Langanke, et al., Phys. Rev. Lett. 74, 2909 (1995).

    Article  ADS  Google Scholar 

  46. P. Möller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).

    Article  ADS  Google Scholar 

  47. P. Möller and J. Randrup, Nucl. Phys. A 514, 1 (1990).

    Article  ADS  Google Scholar 

  48. J. Krumlinde and P. Möller, Nucl. Phys. A 417, 419 (1984).

    Article  ADS  Google Scholar 

  49. E. Kolbe, Nucl. Phys. A 719, C135 (2003).

    Article  ADS  Google Scholar 

  50. Z. Patyk, R. Smolanczuk, and A. Sobiczewski, Nucl. Phys. A 626, 337 (1997).

    Article  ADS  Google Scholar 

  51. I. Muntian, Z. Patyk, and A. Sobiczewski, Phys. At. Nucl. 66, 1015 (2003).

    Article  Google Scholar 

  52. M. Samyn, S. Goriely, P.-H. Heenen, et al., Nucl. Phys. A 700, 142 (2002).

    Article  ADS  Google Scholar 

  53. S. Goriely, M. Samyn, and J. M. Pearson, Phys. Rev. C 75, 064312 (2007).

    Article  ADS  Google Scholar 

  54. P. Möller, A. J. Sierk, T. Ichikawa, et al., Phys. Rev. C 79, 064304 (2009).

    Article  ADS  Google Scholar 

  55. Yu. V. Gaponov and Yu. S. Lyutostansky, Phys. At. Nucl. 73, 1360 (2010).

    Article  Google Scholar 

  56. Yu. S. Lyutostansky, Phys. At. Nucl. 74, 1176 (2011).

    Article  Google Scholar 

  57. P. G. Hansen, Adv. Nucl. Phys. 7, 159 (1973).

    Article  Google Scholar 

  58. Yu. S. Lyutostansky and V. N. Tikhonov, Bull. Russ. Acad. Sci. Phys. 76, 476 (2012).

    Article  Google Scholar 

  59. Yu. S. Lutostansky and N. B. Shulgina, Phys. Rev. Lett. 67, 430 (1991).

    Article  ADS  Google Scholar 

  60. I. N. Izosimov and Yu. I. Naumov, Izv. Akad. Nauk SSSR, Ser. Fiz. 42, 2248 (1978); I. N. Izosimov, V. G. Kalinnikov, and A. A. Solnyshkin, Phys. Part. Nucl. Lett. 5, 427 (2008).

    Google Scholar 

  61. A. A. Borovoi, Yu. S. Lyutostanskii, I. V. Panov et al., JETP Lett. 45, 665 (1987).

    ADS  Google Scholar 

  62. M. Palarczyk, J. Rapaport, C. Hautala, et al., Phys. Rev. C 59, 500 (1999).

    Article  ADS  Google Scholar 

  63. J. Engel, S. Pittel, and P. Vogel, Phys. Rev. C 50, 1702 (1994).

    Article  ADS  Google Scholar 

  64. Yu. S. Lyutostansky, Bull. Russ. Acad. Sci. Phys. 73, 176 (2009).

    Article  Google Scholar 

  65. J. Jänecke, F. D. Becchetti, A.M. van den Berg, et al., Nucl. Phys. A 526, 1 (1991).

    Article  ADS  Google Scholar 

  66. A. Arima, Nucl. Phys. A 649, 260 (1999); Prog. Part. Nucl. Phys. 46, 119 (2001).

    Article  ADS  Google Scholar 

  67. K. Ikeda, S. Fujii, and J. I. Fujita, Phys. Lett. 3, 271 (1963).

    Article  ADS  Google Scholar 

  68. Yu. S. Lyutostansky, I. V. Panov, and V. K. Sirotkin, Phys. Lett. B 161, 9 (1985).

    Article  ADS  Google Scholar 

  69. Yu. S. Lyutostansky, V. I. Lyashuk, and I. V. Panov, Bull. Russ. Acad. Sci. Phys. 75, 533 (2011).

    Article  Google Scholar 

  70. Yu. S. Lyutostansky, I. V. Panov, O. N. Sinyukova, et al., Sov. J. Nucl. Phys. 44, 43 (1986).

    Google Scholar 

  71. Yu. Oganessian, J. Phys. G 34, R165 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Panov.

Additional information

Original Russian Text © I.V. Panov, I.Yu. Korneev, Yu.S. Lutostansky, F.-K. Thielemann, 2013, published in Yadernaya Fizika, 2013, Vol. 76, No. 1, pp. 90–103.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panov, I.V., Korneev, I.Y., Lutostansky, Y.S. et al. Probabilities of delayed processes for nuclei involved in the r-process. Phys. Atom. Nuclei 76, 88–101 (2013). https://doi.org/10.1134/S1063778813010080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813010080

Keywords

Navigation