Skip to main content
Log in

A consistent model for describing prompt fission neutrons

  • Proceedings of the International Conference “Nuclei, 2014: Fundamental Problems of Nuclear Physics, Atomic Energy, and Nuclear Technologies” (LXIV International Meeting on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A theoretical model for a consistent description of prompt neutron emission for spontaneous and neutronand proton-induced fission over a wide range of energies is presented. Prompt fission neutron parameters are formed at the four main fission process stages: pre-equilibrium particle emission, neutron evaporation upon crossing the fission barrier, neutron evaporation upon descending from the saddle point to the scission point, and neutron emission from pairs of accelerated fragments. The Monte Carlo method is used to simulate the evolution of a nucleus undergoing fission down to the scission point. The parameters of an ensemble of sources after fragmentation are calculated using the scission point model and the multimodal fission model. Calculated neutron spectra and multiplicities are given for spontaneous 244–257Fm and 252Cf fission and 235U fission induced by thermal and 14.7 MeV neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Browne, J.C. and Dietrich, F.S., Phys. Rev. C, 1974, vol. 10, p. 2545.

    Article  ADS  Google Scholar 

  2. Madland, D.G. and Nix, J.R., Nucl. Sci. Eng., 1982, vol. 81, p. 213.

    Article  Google Scholar 

  3. Märten, H. and Seeliger, D., J. Geom. Phys., 1984, vol. 10, p. 349.

    Article  Google Scholar 

  4. Gerasimenko, B.F. and Rubchenya, V.A., At. Energ., 1985, vol. 59, p. 893.

    Article  Google Scholar 

  5. Hambsch, F.-J., Oberstedt, S., Vladuca, G., and Tudora, A., Nucl. Phys. A, 2002, vol. 709, p. 85.

    Article  ADS  Google Scholar 

  6. Lemaire, S., Talou, P., Kawano, T., Chadwick, M.B., and Madland, D.G., Phys. Rev. C, 2005, vol. 72, p. 024601.

    Article  Google Scholar 

  7. Tudora, A., Ann. Nucl. Energy, 2009, vol. 36, p. 72.

    Article  Google Scholar 

  8. Litaize, O. and Serot, O., Phys. Rev. C, 2010, vol. 82, p. 054616.

    Article  Google Scholar 

  9. Talou, P., Becker, B., Kawano, T., Chadwick, M.B., and Danon, Y., Phys. Rev. C, 2011, vol. 83, p. 064612.

    Article  Google Scholar 

  10. Talou, P., Becker, B., Kawano, T., and Danon, Y., EPJ Web Conf., 2012, vol. 21, p. 08003.

    Article  Google Scholar 

  11. Talou, P., Kawano, T., and Stetcu, I., Phys. Proc., 2013, vol. 47, p. 39.

    Article  ADS  Google Scholar 

  12. Rising, M.E., Talou, P., Kawano, T., and Prinja, A.K., Nucl. Sci. Eng., 2013, vol. 175, p. 81.

    Article  Google Scholar 

  13. Rubchenya, V.A., Phys. Rev. C, 2007, vol. 75, p. 054601.

    Article  Google Scholar 

  14. Koning, A.J. and Duijvestijn, M.C., Nucl. Phys. A, 2004, vol. 744, p. 15.

    Article  ADS  Google Scholar 

  15. Bohr, N. and Wheller, J.A., Phys. Rev., 1939, vol. 56, p. 426.

    Article  ADS  Google Scholar 

  16. Kramers, H.A., Physika, 1940, vol. 7, p. 284.

    ADS  MathSciNet  MATH  Google Scholar 

  17. Grangé, P., Hassani, S., Weidenmuller, H.A., Gavron, A., Nix, J.R., and Sierk, A.J., Phys. Rev. C, 1986, vol. 34, p. 209.

    Article  ADS  Google Scholar 

  18. Hofman, H. and Nix, J.R., Phys. Lett. B, 1983, vol. 122, p. 117.

    Article  ADS  Google Scholar 

  19. Rubchenya, V.A., Sov. J. Nucl. Phys., 1970, vol. 11, p. 130.

    Google Scholar 

  20. Wilkins, B.D., Steinberg, E.P., and Chasmann, R.R., Phys. Rev. C, 1976, vol. 14, p. 1832.

    Article  ADS  Google Scholar 

  21. Strutinsky, V.M., Nucl. Phys. A, 1968, vol. 122, p.1.

  22. Dubray, N., Goutte, H., and Delaroche, J.-P., Phys. Rev. C, 2008, vol. 77, p. 014310.

    Article  Google Scholar 

  23. Rubchenya, V.A. and Äystö, J., Eur. Phys. J. A, 2012, vol. 48, p. 44.

    Article  ADS  Google Scholar 

  24. Cwiok, S., Dudek, J., Nazarewicz, W., Skalski, J., and Werner, T., Comput. Phys. Commun., 1987, vol. 46, p. 379.

    Article  ADS  Google Scholar 

  25. Hernandez, H.E., et al., Nucl. Phys. A, 1981, vol. 361, p. 483.

    Article  ADS  Google Scholar 

  26. Brosa, U., Grossmann, S., and Müller, A., Phys. Rep., 1990, vol. 197, p. 167.

    Article  ADS  Google Scholar 

  27. Tsekhanovich, I., Varapai, N., Rubchenya, V.A., et al., Phys. Rev. C, 2004, vol. 70, p. 044610.

    Article  Google Scholar 

  28. Bowman, H., Milton, J., Tompson, S., and Swiatecki, W., Phys. Rev. C, 1962, vol. 126, p. 2120.

    Article  ADS  Google Scholar 

  29. IAEA CRP on Prompt Fission Neutron Spectra of Actinides. https://www-nds.iaea.org/pfns/

  30. Oganessian, Yu.Ts., et al., Phys. Rev. C, 2005, vol. 72, p. 034611.

    Article  ADS  Google Scholar 

  31. Svirikhin, A.I., Andreev, A.V., Dushin, V.N., et al., Eur. Phys. J. A, 2012, vol. 48, p. 121.

    Article  ADS  Google Scholar 

  32. Hoffman, D.C., Nucl. Phys. A, 1989, vol. 502, p.21.

  33. Boikov, G.S., Dmitriev, V.D., Kudyaev, G.A., et al., Sov. J. Nucl. Phys., 1991, vol. 53, p. 392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Rubchenya.

Additional information

Original Russian Text © V.A. Rubchenya, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 7, pp. 980–987.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubchenya, V.A. A consistent model for describing prompt fission neutrons. Bull. Russ. Acad. Sci. Phys. 79, 883–889 (2015). https://doi.org/10.3103/S1062873815070199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873815070199

Keywords

Navigation