Skip to main content
Log in

A study on the Fresnel diffraction of 6He by means of different microscopic density distributions

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The elastic scattering of the halo nucleus 6He from heavy targets such as 197Au and 208Pb has been investigated in order to explain the Coulomb rainbow peak due to the Fresnel-type diffraction observed in the experimental data. In order to examine the role of nuclear potential to describe 6He + 197Au and 6He + 208Pb systems, we have used the no-core shell model, few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear potential have been obtained by using the double-folding model for each of the density distribution and the phenomenological imaginary potentials have been taken as the standard Woods-Saxon shape. We have observed that fewbody and Gaussian-shaped density distributions have given standard Fresnel-type diffraction results, a classical scattering pattern with Coulomb rainbow peak whereas the nuclear potential obtained by using the no-core shell-model density distribution has provided the reduction at Fresnel peak and has given more consistent results with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).

    Article  ADS  Google Scholar 

  2. M. V. Zhukov et al., Phys. Rept. 231, 151 (1993).

    Article  ADS  Google Scholar 

  3. P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).

    Article  ADS  Google Scholar 

  4. K. Riisager, Rev. Mod. Phys. 66, 1105 (1994).

    Article  ADS  Google Scholar 

  5. R. J. Smith, J. J. Kolata, K. Lamkin, et al., Phys. Rev. C 43, 761 (1991).

    Article  ADS  Google Scholar 

  6. M. Milin, S. Cherubini, T. Davinson, et al., Nucl. Phys. A 730, 285 (2004).

    Article  ADS  Google Scholar 

  7. E. A. Benjamim, A. Lépine-Szily, D. R. Mendes, Jr., et al., Phys. Lett. B 647, 30 (2007).

    Article  ADS  Google Scholar 

  8. L. R. Gasques, L. C. Chamon, D. Pereira, et al., Phys. Rev. C 67, 024602 (2003).

    Article  ADS  Google Scholar 

  9. A. Di Pietro, P. Figuera, F. Amorini, et al., Phys. Rev. C 69, 044613 (2004).

    Article  ADS  Google Scholar 

  10. A. Chatterjee, A. Navin, A. Shrivastava, et al., Phys. Rev. Lett. 101, 032701 (2008).

    Article  ADS  Google Scholar 

  11. G. Baur, K. Hencken, D. Trautmann, et al., Prog. Part. Nucl. Phys. 46, 99 (2001).

    Article  ADS  Google Scholar 

  12. N. A. Orr, Nucl. Phys. A 616, 155c (1997).

    Article  ADS  Google Scholar 

  13. I. J. Thompson and Y. Suzuki, Nucl. Phys. A 693, 424 (2001).

    Article  ADS  Google Scholar 

  14. W. E. Frahn, Phys. Rev. Lett. 26, 568 (1971).

    Article  ADS  Google Scholar 

  15. Y. Kucuk, I. Boztosun, and N. Keeley, Phys. Rev. C 79, 067601 (2009).

    Article  ADS  Google Scholar 

  16. C. E. Thorn, M. J. LeVine, J. J. Kolata, et al., Phys. Rev. Lett. 38, 384 (1977).

    Article  ADS  Google Scholar 

  17. A.M. Sánchez-Benitez, D. Escrig, M. A. G. Alvarez, et al., Nucl. Phys.A 803, 30 (2008).

    Article  ADS  Google Scholar 

  18. J. P. Fernández-Garcia, M. Rodriguez-Gallardo, M. A. G. Alvarez, and A. M. Moro, Nucl. Phys. A 840, 19 (2010).

    Article  ADS  Google Scholar 

  19. M. Aygun, Y. Kucuk, I. Boztosun, and Awad A. Ibraheem, Nucl. Phys. A 848, 245 (2010).

    Article  ADS  Google Scholar 

  20. I. Stetcu, B. R. Barrett, P. Navrátil, and J. P. Vary, Phys. Rev. C 71, 044325 (2005).

    Article  ADS  Google Scholar 

  21. I. Boztosun,M. Karakoc, and Y. Kucuk, Phys. Rev. C 77, 064608 (2008).

    Article  ADS  Google Scholar 

  22. P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett, J. Phys. G 36, 083101 (2009).

    Article  ADS  Google Scholar 

  23. P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000).

    Article  ADS  Google Scholar 

  24. P. Navrátil, W. E. Ormand, E. Caurier, and C. Bertulani, UCRL-PROC-211912, Lawrence Livemore National Laboratory (2005).

  25. J. S. Al-Khalili and J. A. Tostevin, Phys. Rev. Lett. 76, 3903 (1996).

    Article  ADS  Google Scholar 

  26. I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).

    Article  ADS  Google Scholar 

  27. Reference Input Parameter Library (RIPL-2), http://www-nds.iaea.org/RIPL-2/

  28. R. Raab, PhD Thesis, Katholieke Universiteit Leuven (2001).

  29. O. R. Kakuee, M. A. G. Alvarez, M. V. Andrés, et al., Nucl. Phys. A 765, 294 (2006).

    Article  ADS  Google Scholar 

  30. Y. Kucuk, I. Boztosun, and T. Topel, Phys. Rev. C 80, 054602 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aygun.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aygun, M., Boztosun, I. & Sahin, Y. A study on the Fresnel diffraction of 6He by means of different microscopic density distributions. Phys. Atom. Nuclei 75, 963–968 (2012). https://doi.org/10.1134/S1063778812080030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812080030

Keywords

Navigation