Skip to main content
Log in

Sensitivity of the halo nuclei-12C elastic scattering at incident nucleon energy 800 MeV to the halo density distribution

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the framework of Glauber optical limit approximation where Coulomb effect is taken into account, the elastic scattering differential cross section for halo nuclei with \({}^{12}{\text{C}}\) at 800 MeV/N has been calculated. Its sensitivity to the halo densities and the root mean square of the core and halo is the main goal of the current study. The projectile nuclei are taken to be one-neutron and two-neutron halo. The calculations are carried out for Gaussian–Gaussian, Gaussian–Oscillator and Gaussian-2 s phenomenological densities for each considered projectile in the mass number range 6–29. Also included a comparison between the obtained results of phenomenological densities and the results within the microscopic densities LSSM of \({}^{6}{\text{He}}\) and \({}^{11}{\text{Li}}\) and microscopic densities GCM of \({}^{11}{\text{Be}}\) where the density of the target nucleus \({}^{12}{\text{C}}\) obtained from electron-\({}^{12}{\text{C}}\) scattering is used. The zero range approximation is considered in the calculations. We found that the sensitivity of elastic scattering differential cross section to the halo density is clear if the nucleus appears as two clear different clusters, core and halo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P Hansen, A Jensen and B Jonson Ann. Rev. Nucl. Part. Sci. 45 591 (1995)

    Article  ADS  Google Scholar 

  2. B Jonson Phys. Rep. 389 1 (2004)

    Article  ADS  Google Scholar 

  3. K Riisager Phys. Scr. 152 014001 (2013)

    Article  Google Scholar 

  4. I Tanihata J. Phys. G: Nucl. Part. Phys. 22 157 (1996)

    Article  ADS  Google Scholar 

  5. P Hansen and B Jonson Euro. Phys. Lett. 4 409 (1987)

    Article  ADS  Google Scholar 

  6. M Bush, J Al-Khalili, J Tostevin and R Johnson Phys. Rev. C53 3009 (1996)

    Article  ADS  Google Scholar 

  7. A Khouaja et al. Nucl. Phys. A 780 1 (2006)

    Article  ADS  Google Scholar 

  8. A Ozawa et al. Nucl. Phys. A 691 599 (2001)

    Article  ADS  Google Scholar 

  9. A Ozawa, T Suzuki and I Tanihata Nucl. Phys. A693 32 (2001)

    Article  ADS  Google Scholar 

  10. M Rashdan Int. J. of Mod. Phys. E21 1250083 (2012)

  11. B Abu-Ibrahim, S Iwasaki and W Horiuchi J. Phys. Soc. Japan 78 044201 (2009)

  12. R Glauber Lectures in Theoretical Physics Vol. 1 (Boulder, CO: University of Colorado Press) (ed.) W Brittin p 315 (1959)

  13. B Abu-Ibrahim, Y Ogawac, Y Suzuki and I Tanihata Comput. Phys. Commun. 151 369 (2003)

    Article  ADS  Google Scholar 

  14. R Bassel and C Wilkin Phys. Rev. 174 1179 (1968)

    Article  ADS  Google Scholar 

  15. G Alkhazov and A Lobodenko Phys. At. Nucl. 70 93 (2007)

    Article  Google Scholar 

  16. G Alkhazov and V Sarantsev Phys. At. Nucl. 75 1544 (2012)

    Article  Google Scholar 

  17. M El-Gogary, A Shalaby, M Hassan and A Hegazy Phys. Rev. C61 044604 (2000)

    Article  ADS  Google Scholar 

  18. M El-Gogary, A Shalaby and M Hassan 1998 Phys. Rev. C 58 3513 (1998)

    Article  ADS  Google Scholar 

  19. M Alvi and M Abdulmomen Phys. Scr. 78 065007 (2008)

    Article  ADS  Google Scholar 

  20. G Faldt and H Pilkuhn Phys. Lett. B46 337 (1973)

    Article  ADS  Google Scholar 

  21. B Abu-Ibrahim and Y Suzuki Nucl. Phys. A 706 111 (2002)

    Article  ADS  Google Scholar 

  22. H Horiuchi, Y Suzuki, P Capel and D Baye Phys. Rev. C 81 024606 (2010)

    Article  ADS  Google Scholar 

  23. I Tag El-Din, S Hassan and M Hassan J. Nucl. Radia. Phys. 5 35 (2010)

  24. I Tag El-Din, S Hassan and H El-Rebdi Arab. J. Nucl. Sci. Appl. 44 148 (2011)

  25. I Thampson and Y Suzuki Nucl. Phys. A 693 424 (2001)

    Article  ADS  Google Scholar 

  26. P Egelhof et al. Eur. Phys. J. A15 27 (2002)

    Article  ADS  Google Scholar 

  27. G Alkhazov et al. Nucl. Phys. A 712 269 (2002)

    Article  ADS  Google Scholar 

  28. A Dobrovolsky et al. Nucl. Phys. A 766 1 (2006)

    Article  ADS  Google Scholar 

  29. S Ilieva et al. Nucl. Phys. A 875 8 (2012)

    Article  ADS  Google Scholar 

  30. G Alkhazov, Yu Shabelski and I Novikov Int. J. Mod. Phys. E 20 583 (2011)

    Article  ADS  Google Scholar 

  31. G Alkhazov et al. Phys. Rev. Lett. 78 2313 (1997)

    Article  ADS  Google Scholar 

  32. G Alkhazov, A Dobrovolsky and A Lobodenko Nucl. Phys. A 734 361 (2004)

  33. M Bush, J Al-Khalili, J Tostevin and R Johnson Phys. Rev. C 53 3009 (1996)

  34. P Egelhof Prog. Part. Nucl. Phys. 46 307 (2001)

    Article  ADS  Google Scholar 

  35. P Egelhof Nucl. Phys. A 722 254 (2003)

    Article  ADS  Google Scholar 

  36. S Neumaier et al. Nucl. Phys. A 712 247 (2002)

    Article  ADS  Google Scholar 

  37. M Hassan, M Nour El-Din, A Ellithi, E Ismail and H Hosny Int. J. Mod. Phys. E 24 1550062 (2015)

    Article  ADS  Google Scholar 

  38. S Karataglidis, P J Dortmans, K Amos and C Bennhold Phys. Rev. C 61 024319 (2000)

    Article  ADS  Google Scholar 

  39. K V Lukyanov, I N Kukhtina, V K lukyanov, Y E Penionzhkevich, Y G Sobolev and E V Zemlyanaya AIP Con. Proc. 912 170 (2007)

    Article  ADS  Google Scholar 

  40. V K Lukyanov, 1 D N Kadrev, E V Zemlyanaya, A N Antonov, K V Lukyanov and M K Gaidarov Phys. Rev. C 82 024604 (2010)

    Article  ADS  Google Scholar 

  41. V K Lukyanov, D N Kadrev, E V Zemlyanaya, A N Antonov, K V Lukyanov, M K Gaidarov and K. Spasova Phys. Rev. C 88 034612 (2013)

    Article  ADS  Google Scholar 

  42. P Descouvemont Nucl. Phys. A 615 261 (1997)

    Article  ADS  Google Scholar 

  43. V K Lukyanov, D N Kadrev, E V Zemlyanaya, K Spasova, K V Lukyanov, A N Antonov and M K Gaidarov Phys. Rev. C 91 034606 (2015)

    Article  ADS  Google Scholar 

  44. V V Burov, D N Kadrev, V K Lukyanov and Y S Pol Phys. At. Nucl. 61 595 (1998)

    Google Scholar 

  45. V Lukyanov and E V Zemlyanaya J. Phys. G: Nucl. Part. Phys. 26 357 (2000)

  46. V Lukyanov, B Slowiniski and E Zemlyanaya Phys. At. Nucl. 64 1273 (2001)

    Article  Google Scholar 

  47. S Ershov, T Rogde, B Danilin, J Vaagen, I Thompson and F Gareev Phys. Rev. C56 1483 (1997)

    Article  ADS  Google Scholar 

  48. A Korsheninnikov et al. Nucl. Phys. A616 189c (1997)

    Article  ADS  Google Scholar 

  49. M Zhukov, B Danilin, D Fedorov, J Bang, I Thompson and J Vaagen Phys. Rep. 231 151 (1993)

    Article  ADS  Google Scholar 

  50. V Lukyanov, E Zemlyanaya and B Slowiniski arXiv:nucl-th/0308079v1 (2003)

  51. S Charagi and S Gupta Phys. Rev. C41 1610 (1990)

    Article  ADS  Google Scholar 

  52. B Abu-Ibrahim, W Horiuchi, A KohamaA and Y Suzuki Phys. Rev. C 77 034607 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A M Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.A.M., Nour El-Din, M.S.M., Ellithi, A. et al. Sensitivity of the halo nuclei-12C elastic scattering at incident nucleon energy 800 MeV to the halo density distribution. Indian J Phys 91, 1245–1258 (2017). https://doi.org/10.1007/s12648-017-1018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1018-y

Keywords

PACS Nos.

Navigation