Skip to main content
Log in

Mass-energy distribution of fragments within Langevin dynamics of fission induced by heavy ions

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A stochastic approach based on four-dimensional Langevin fission dynamics is applied to calculating mass-energy distributions of fragments originating from the fission of excited compound nuclei. In the model under investigation, the coordinate K representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of the {c, h, α} parametrization. The evolution of the orientation degree of freedom (K mode) is described by means of the Langevin equation in the overdamped regime. The tensor of friction is calculated under the assumption of the reducedmechanismof one-body dissipation in the wall-plus-window model. The calculations are performed for two values of the coefficient that takes into account the reduction of the contribution from the wall formula: k s = 0.25 and k s = 1.0. Calculations with a modified wall-plus-window formula are also performed, and the quantity measuring the degree to which the single-particle motion of nucleons within the nuclear system being considered is chaotic is used for k s in this calculation. Fusion-fission reactions leading to the production of compound nuclei are considered for values of the parameter Z 2/A in the range between 21 and 44. So wide a range is chosen in order to perform a comparative analysis not only for heavy but also for light compound nuclei in the vicinity of the Businaro-Gallone point. For all of the reactions considered in the present study, the calculations performed within four-dimensional Langevin dynamics faithfully reproduce mass-energy and mass distributions obtained experimentally. The inclusion of the K mode in the Langevin equation leads to an increase in the variances of mass and energy distributions in relation to what one obtains from three-dimensional Langevin calculations. The results of the calculations where one associates k s with the measure of chaoticity in the single-particle motion of nucleons within the nuclear system under study are in good agreement for variances of mass distributions. The results of calculations for the correlations between the prescission neutron multiplicity and the fission-fragment mass, 〈n pre(M)〉, and between, this multiplicity and the kinetic energy of fission fragments, 〈n pre(E k )〉, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Plasil, D. S. Burnett, H. C. Britt, and S.G. Thompson, Phys. Rev. 142, 696 (1966).

    Article  ADS  Google Scholar 

  2. J. R. Nix and W. J. Swiatecki, Nucl. Phys. A 71, 1 (1965).

    Article  Google Scholar 

  3. J. R. Nix, Nucl. Phys. A 130, 241 (1969).

    Article  ADS  Google Scholar 

  4. G. G. Chubaryan, M. G. Itkis, and S. M. Luk’yanov, Phys. At. Nucl. 56, 286 (1993).

    Google Scholar 

  5. M. G. Itkis, Yu. A. Muzychka, Yu. Ts. Oganessian, et al., Phys. At. Nucl. 58, 2026 (1995).

    Google Scholar 

  6. A. Ya. Rusanov, M. G. Itkis, and V. N. Okolovich, Phys. At. Nucl. 60, 683 (1997).

    Google Scholar 

  7. M.G. Itkis and A. Ya. Rusanov, Phys. Part. Nucl. 29, 60 (1998).

    Article  Google Scholar 

  8. O. I. Serdyuk, G. D. Adeev, I. I. Gonchar, et al., Sov. J. Nucl. Phys. 46, 399 (1987).

    Google Scholar 

  9. G. D. Adeev, I. I. Gontchar, V. V. Pashkevich, et al., Sov. J. Part. Nucl. 19, 529 (1988).

    Google Scholar 

  10. G. D. Adeev and V. V. Pashkevich, Nucl. Phys. A 502, 405 (1989).

    Article  ADS  Google Scholar 

  11. A. V. Karpov, P. N. Nadtochy, D. V. Vanin, and G. D. Adeev, Phys. Rev. C 63, 054610 (2001).

    Article  ADS  Google Scholar 

  12. G. D. Adeev, A. V. Karpov, P. N. Nadtochy, and D. V. Vanin, Phys. Part. Nucl. 36, 378 (2005).

    Google Scholar 

  13. E. G. Ryabov, A. V. Karpov, R. N. Nadtochy, and G. D. Adeev, Phys. Rev. C 78, 044614 (2008).

    Article  ADS  Google Scholar 

  14. P. N. Nadtochy, G. D. Adeev, and A. V. Karpov, Phys. Rev. C 65, 064615 (2002).

    Article  ADS  Google Scholar 

  15. V. A. Drozdov, D. O. Eremenko, O. V. Fotina, et al., AIP Conf. Proc. 704, 130 (2004).

    Article  ADS  Google Scholar 

  16. D. O. Eremenko, V. A. Drozdov, M. H. Eslamizadex, et al., Phys. At. Nucl. 69, 1423 (2006).

    Article  Google Scholar 

  17. J. P. Lestone, Phys. Rev. C 59, 1540 (1999).

    Article  ADS  Google Scholar 

  18. J. P. Lestone and S. G. McCalla, Phys. Rev. C 79, 044611 (2009).

    Article  ADS  Google Scholar 

  19. P. Möller, A. J. Sierk, T. Ichikawa, et al., Phys. Rev. C 79, 064304 (2009).

    Article  ADS  Google Scholar 

  20. J. Randrup and P. Möller, Phys. Rev. Lett. 106, 132503 (2011).

    Article  ADS  Google Scholar 

  21. J. Randrup, P. Möller, and A. J. Sierk, Phys. Rev. C 84, 034613 (2011).

    Article  ADS  Google Scholar 

  22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  23. L. G. Moretto, Nucl. Phys. A 247, 211 (1975).

    Article  ADS  Google Scholar 

  24. L. G. Sobotka, M. A. McMahan, R. J. McDonald, et al., Phys. Rev. Lett. 53, 2004 (1984).

    Article  ADS  Google Scholar 

  25. A. E. Gegechkori and G. D. Adeev, Phys. At. Nucl. 74, 1 (2011).

    Article  Google Scholar 

  26. Yu. A. Anishchenko, A. E. Gegechkori, and G. D. Adeev, Phys. At. Nucl. 74, 341 (2011).

    Article  Google Scholar 

  27. M. Brack, J. Damgaard, A. S. Jensen, et al., Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  28. S. Pal, G. Chaudhuri, and J. Sadhukhan, Nucl. Phys. A 808, 1 (2008).

    Article  ADS  Google Scholar 

  29. R. W. Hasse and W. D. Myers, Geometrical Relationships of Macroscopic Nuclear Physics (Springer-Verlag, Heidelberg, 1988).

    Book  Google Scholar 

  30. Yu. A. Anishchenko, A. E. Gegechkori, P. N. Nadtochy, and G. D. Adeev, Phys. At. Nucl. 72, 1992 (2009).

    Article  Google Scholar 

  31. R. N. Nadtochy and G. D. Adeev, Phys. Rev. C 72, 054608 (2005).

    Article  ADS  Google Scholar 

  32. I. Kelson, Phys. Rev. 136, B1667 (1964).

    Article  ADS  Google Scholar 

  33. K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys.Rev. C 13, 2385 (1976).

    Article  ADS  Google Scholar 

  34. J. Blocki, Y. Boneh, J. R. Nix, et al., Ann. Phys. (N.Y.) 113, 330 (1978).

    Article  ADS  Google Scholar 

  35. J. Randrup and W. J. Swiatecki, Nucl. Phys. A 429, 105 (1984).

    Article  ADS  Google Scholar 

  36. J. P. Blocki, H. Feldmeier, and W. J. Swiatecki, Nucl. Phys. A 459, 145 (1986).

    Article  ADS  Google Scholar 

  37. J. Blocki, R. Planeta, J. Brzychczyk, and K. Grotowski, Z. Phys. A 341, 307 (1992).

    Article  ADS  Google Scholar 

  38. A. J. Sierk and J. R. Nix, Phys. Rev. C 21, 982 (1980).

    Article  ADS  Google Scholar 

  39. J. J. Griffin and M. Dworzecka, Nucl. Phys. A 455, 61 (1986).

    Article  ADS  Google Scholar 

  40. J. R. Nix and A. J. Sierk, in Proceedings of the International School-Seminar on Heavy Ion Physics, Dubna, USSR, 1986, Ed. by M. I. Zarubina and E. V. Ivashkevich (JINR, Dubna, 1987), p. 453.

    Google Scholar 

  41. J. R. Nix and A. J. Sierk, in Proceedings of the 6th Adriatic Conference on Nuclear Physics: Frontiers of Heavy Ion Physics, Dubrovnik, Yugoslavia, 1987, Ed. by N. Cindro, R. Caplar, and W. Greiner (World Sci., Singapore, 1990), p. 333.

    Google Scholar 

  42. I. I. Gontchar, A. E. Gettinger, L. I. Gur’yan, and W. Wagner, Phys. At. Nucl. 63, 1688 (2000).

    Article  Google Scholar 

  43. S. Pal and T. Mukhopadhyay, Phys. Rev. C 57, 210 (1998).

    Article  ADS  Google Scholar 

  44. J. Blocki, F. Brut, T. Srokowski, and W. J. Swiatecki, Nucl. Phys. A 545, 511 (1992).

    Article  ADS  Google Scholar 

  45. G. Chaudhuri and S. Pal, Phys. Rev. C 63, 064603 (2001).

    Article  ADS  Google Scholar 

  46. H. J. Krappe, J. R. Nix, and A. J. Sierk, Phys. Rev.C 20, 992 (1979).

    Article  ADS  Google Scholar 

  47. A. J. Sierk, Phys. Rev. C 33, 2039 (1986).

    Article  ADS  Google Scholar 

  48. A. V. Ignatyuk, M. G. Itkis, V. N. Okolovich, et al., Sov. J. Nucl. Phys. 21, 612 (1975).

    Google Scholar 

  49. M.G. Kendall and A. Stewart, The Advanced Theory of Statistics, Vol. 1: Distribution Theory (Hafner, New York, 1969; Nauka, Moscow, 1966).

    Google Scholar 

  50. M. V. Borunov, R. N. Nadtochy, and G. D. Adeev, Nucl. Phys. A 799, 56 (2008).

    Article  ADS  Google Scholar 

  51. K. T. R. Davies and J. R. Nix, Phys. Rev. C 14, 1977 (1976).

    Article  ADS  Google Scholar 

  52. G. Saupe, O. I. Serdyuk, G. D. Adeev, and V. V. Pashkevich, Sov. J. Nucl. Phys. 48, 26 (1988).

    Google Scholar 

  53. J. Marten and P. Fröbrich, Nucl. Phys. A 545, 854 (1992).

    Article  ADS  Google Scholar 

  54. P. Fröbrich and I. I. Gontchar, Phys. Rep. 292, 131 (1998).

    Article  ADS  Google Scholar 

  55. V. M. Strutinsky, N. Ya. Lyashchenko, and N. A. Popov, Nucl. Phys. 46, 639 (1963).

    Article  Google Scholar 

  56. N. D. Mavlitov, P. Fröbrich, and I. I. Gontchar, Z. Phys. A 342, 195 (1992).

    Article  ADS  Google Scholar 

  57. H. A. Weidenmüller and Z. Jing-Shang, J. Stat. Phys. 34, 191 (1984).

    Article  ADS  Google Scholar 

  58. N. Carjan and M. Kaplan, Phys. Rev. C 45, 2185 (1992).

    Article  ADS  Google Scholar 

  59. J. Bao, Y. Zhuo, and X. Wu, Z. Phys. A 352, 321 (1995).

    Article  ADS  Google Scholar 

  60. V. E. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C 31, 1550 (1985).

    Article  ADS  Google Scholar 

  61. D. J. Hinde, D. Hilscher, H. Rossner, et al., Phys. Rev. C 45, 1229 (1992).

    Article  ADS  Google Scholar 

  62. H. Rossner, D. Hilscher, D. J. Hinde, et al., Phys. Rev. C 40, 2629 (1989).

    Article  ADS  Google Scholar 

  63. P. Fröbrich, I. I. Gontchar, and N. D. Mavlitov, Nucl. Phys. A 556, 281 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Anischenko.

Additional information

Original Russian Text © Yu.A. Anischenko, G.D. Adeev, 2012, published in Yadernaya Fizika, 2012, Vol. 75, No. 8, pp. 992–1007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anischenko, Y.A., Adeev, G.D. Mass-energy distribution of fragments within Langevin dynamics of fission induced by heavy ions. Phys. Atom. Nuclei 75, 933–948 (2012). https://doi.org/10.1134/S1063778812080029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812080029

Keywords

Navigation