Skip to main content
Log in

Study of fission dynamics of the excited nuclei produced in fusion reactions in the framework of the four-dimensional Langevin equations

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The dynamics of fission of excited nuclei has been studied by solving four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. The projection of the total spin of the compound nucleus to the symmetry axis, K, was considered as the fourth dimension in Langevin dynamical calculations. The average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy have been calculated in a wide range of fissile parameter for compound nuclei 162Yb, 172Yb, 215Fr, 224Th, 248Cf, 260Rf and results compared with the experimental data. Calculations were performed with a constant dissipation coefficient of K, γK (MeV zs)-1/2, and with a non-constant dissipation coefficient. Comparison of the theoretical results for the average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy with the experimental data showed that the results of four-dimensional Langevin equations with a non-constant dissipation coefficient are in better agreement with the experimental data. Furthermore, the difference between the results of two models for compound nuclei with low fissile parameter is low whereas, for heavy compound nuclei, is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Blann, T.A. Komoto, Lawrence Livermore National Laboratory Report No. UCID 19390 (1982)

  2. M. Blann, J. Bisplinghoff, Lawrence Livermore National Laboratory Report No. UCID 19614 (1982)

  3. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

  4. H. Rossner, D. Hilscher, D.J. Hinde, B. Gebauer, M. Lehmann, M. Wilpert, E. Mordhorst, Phys. Rev. C 40, 2629 (1989)

    Article  ADS  Google Scholar 

  5. J.P. Lestone et al., Nucl. Phys. A 559, 277 (1993)

    Article  ADS  Google Scholar 

  6. P.N. Nadtochy, E.G. Ryabov, A.E. Gegechkori, Yu.A. Anischenko, G.D. Adeev, Phys. Rev. C 89, 014616 (2014)

    Article  ADS  Google Scholar 

  7. P.N. Nadtochy, E.G. Ryabov, A.E. Gegechkori, Yu.A. Anischenko, G.D. Adeev, Phys. Rev. C 85, 064619 (2012)

    Article  ADS  Google Scholar 

  8. Yu.A. Anischenko, A.E. Gegechkori, G.D. Adeev, Acta Phys. Pol. B 42, 493 (2011)

    Article  Google Scholar 

  9. H. Eslamizadeh, Eur. Phys. J. A 47, 1 (2011)

    Article  Google Scholar 

  10. H. Eslamizadeh, J. Phys. G: Nucl. Part. Phys. 40, 095102 (2013)

    Article  ADS  Google Scholar 

  11. P.N. Nadtochy, A. Kelić, K.-H. Schmidt, Phys. Rev. C 75, 064614 (2007)

    Article  ADS  Google Scholar 

  12. H. Eslamizadeh, Int. J. Mod. Phys. E 21, 1 (2012)

    Article  Google Scholar 

  13. W. Ye, Int. J. Mod. Phys. E 23, 1460003 (2014)

    Article  Google Scholar 

  14. W. Ye, N. Wang, Phys. Rev. C 86, 034605 (2013)

    Article  ADS  Google Scholar 

  15. H. Eslamizadeh, M. Pirpour, Chin. Phys. C 38, 064101 (2014)

    Article  ADS  Google Scholar 

  16. H. Eslamizadeh, Pramana J. Phys. 81, 807 (2013)

    Article  ADS  Google Scholar 

  17. Yu.A. Lazarev et al., Phys. Rev. Lett. 70, 1220 (1993)

    Article  ADS  Google Scholar 

  18. I.I. Gontchar et al., Phys. At. Nucl. 67, 2080 (2004)

    Article  Google Scholar 

  19. T. Wada et al., Nucl. Phys. A 538, 283c (1992)

    Article  ADS  Google Scholar 

  20. G.R. Tillack et al., Phys. Lett. B 296, 296 (1992)

    Article  ADS  Google Scholar 

  21. G.I. Kosenko et al., Phys. At. Nucl. 61, 2031 (1998)

    Google Scholar 

  22. D.V. Vanin et al., Phys. At. Nucl. 63, 1865 (2000)

    Article  Google Scholar 

  23. G.I. Kosenko et al., Sov. J. Nucl. Phys. 55, 514 (1992)

    Google Scholar 

  24. I.I. Gontchar et al., Phys. At. Nucl. 63, 1688 (2000)

    Article  Google Scholar 

  25. J.P. Lestone, Phys. Rev. C 59, 1540 (1999)

    Article  ADS  Google Scholar 

  26. J.P. Lestone, S.G. McCalla, Phys. Rev. C 79, 044611 (2009)

    Article  ADS  Google Scholar 

  27. D.O. Eremenko et al., Phys. At. Nucl. 69, 1423 (2006)

    Article  Google Scholar 

  28. P.N. Nadtochy, G.D. Adeev, A.V. Karpov, Phys. Rev. C 65, 064615 (2002)

    Article  ADS  Google Scholar 

  29. A.V. Karpov, P.N. Nadtochy, D.V. Vanin, G.D. Adeev, Phys. Rev. C 63, 054610 (2001)

    Article  ADS  Google Scholar 

  30. A.V. Karpov, R.M. Hiryanov, A.V. Sagdeev, G.D. Adeev, J. Phys. G: Nucl. Part. Phys. 34, 255 (2007)

    Article  ADS  Google Scholar 

  31. M. Brack, J. Damgaard, A.S. Jensen, H.C. Puli, V.M. Strutinsky, Rev. Mod. Phys. 44, 320 (1972)

    Article  ADS  Google Scholar 

  32. A.K. Dhara. K. Krishan, C. Bhattacharya, S. Bhattacharya, Phys. Rev. C 57, 2453 (1998)

    Article  ADS  Google Scholar 

  33. H.A. Kramers, Physica (Amsterdam) 7, 284 (1940)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Y. Abe, C. Gregoire, H. Delagrange, J. Phys. C 4, 329 (1986)

    Google Scholar 

  35. A.V. Ignatyuk, M.G. Itkis, V.N. Okolovich, G.N. Smirenkin, A.S. Tishin, Yad. Fiz. 21, 1185 (1975)

    Google Scholar 

  36. S. Pal, T. Mukhopadhyay, Phys. Rev. C 57, 210 (1998)

    Article  ADS  Google Scholar 

  37. J. Blocki, F. Brut, T. Srokowski, W.J. Swiatecki, Nucl. Phys. A 545, 511 (1992)

    Article  ADS  Google Scholar 

  38. D.V. Vanin, G.I. Kosenko, G.D. Adeev, Phys. Rev. C 59, 2114 (1999)

    Article  ADS  Google Scholar 

  39. K.T.R. Davies, A.J. Sierk, J.R. Nix, Phys. Rev. C 13, 2358 (1976)

    Article  Google Scholar 

  40. S.G. McCalla, J.P. Lestone, Phys. Rev. Lett. 101, 032702 (2008)

    Article  ADS  Google Scholar 

  41. T. Døssing, J. Randrup, Nucl. Phys. A 433, 215 (1985)

    Article  ADS  Google Scholar 

  42. J. Randrup, Nucl. Phys. A 383, 468 (1982)

    Article  ADS  Google Scholar 

  43. K.T.R. Davies, J.R. Nix, Phys. Rev. C 14, 1977 (1976)

    Article  ADS  Google Scholar 

  44. H.J. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C 20, 992 (1979)

    Article  ADS  Google Scholar 

  45. A.J. Sierk, Phys. Rev. C 33, 2039 (1986)

    Article  ADS  Google Scholar 

  46. P. Fröbrich, I.I. Gontchar, Phys. Rep. 292, 131 (1998)

    Article  ADS  Google Scholar 

  47. M. Blann, Phys. Rev. C 21, 1770 (1980)

    Article  ADS  Google Scholar 

  48. J.E. Lynn, The Theory of Neutron Resonance Reactions (Clarendon, Oxford, 1968) p. 325

  49. J. Bao et al., Z. Phys. A 352, 321 (1995)

    Article  ADS  Google Scholar 

  50. S.K. Samaddar et al., Phys. Scr. 255, 17 (1982)

    Google Scholar 

  51. D.J. Hinde et al., Phys. Rev. C 45, 1229 (1992)

    Article  ADS  Google Scholar 

  52. A.YA. Rusanov et al., Phys. At. Nucl. 60, 683 (1997)

    Google Scholar 

  53. M.G. Itkis, in Proceedings of the Conference on low Energy Nuclear Dynamics (LEND-95) St. Petersburg (1995), edited by Yu.Ts. Oganessian (World Scientific, Singapore, 1995) p. 177

  54. G.G. Chubaryan et al., Phys. At. Nucl. 56, 286 (1993)

    Google Scholar 

  55. J.P. Lestone, A.A. Sonzogni, M.P. Kelly, R. Vandenbosch, J. Phys. G: Nucl. Part. Phys. 23, 1349 (1997)

    Article  ADS  Google Scholar 

  56. F.D. Becchetti et al., Phys. Rev. C 28, 276 (1983)

    Article  ADS  Google Scholar 

  57. F.D. Becchetti et al., Bull. Am. Phys. Soc. 28, 698 (1983)

    Google Scholar 

  58. M.C. Duijvestijn et al., Phys. Rev. C 59, 776 (1999)

    Article  ADS  Google Scholar 

  59. V.S. Barashenkov, V.D. Toneev, Interaction of High Energy Particles and Nuclei with Nuclei (Atomizdat, Moscow, 1972) p. 566

  60. O.E. Shigaev, Radium institut leningrad report RI-17 (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Eslamizadeh.

Additional information

Communicated by K. Yabana

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslamizadeh, H. Study of fission dynamics of the excited nuclei produced in fusion reactions in the framework of the four-dimensional Langevin equations. Eur. Phys. J. A 50, 186 (2014). https://doi.org/10.1140/epja/i2014-14186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14186-6

Keywords

Navigation