Skip to main content
Log in

Spin-flavor oscillations of Dirac neutrinos described by relativistic quantum mechanics

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Spin-flavor oscillations of Dirac neutrinos in matter and a magnetic field are studied using the method of relativistic quantum mechanics. Using the exact solution of the wave equation for a massive neutrino, taking into account external fields, the effective Hamiltonian governing neutrino spin-flavor oscillations is derived. Then the The consistency of our approach with the commonly used quantum mechanical method is demonstrated. The obtained correction to the usual effective Hamiltonian results in the appearance of the new resonance in neutrino oscillations. Applications to spin-flavor neutrino oscillations in an expanding envelope of a supernova are discussed. In particular, transitions between right-polarized electron neutrinos and additional sterile neutrinos are studied for realistic background matter and magnetic field distributions. The influence of other factors such as the longitudinal magnetic field, the matter polarization, and the non-standard contributions to the neutrino effective potential, is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Voloshin, M. I. Vysorskii, and L. B. Okun’, Sov. Phys. JETP 64, 446 (1986).

    Google Scholar 

  2. C.-S. Limand W. J. Marciano,Phys. Rev.D 37, 1368 (1988).

    Article  ADS  Google Scholar 

  3. R. N. Mohapatra and A. Yu. Smirnov, Annu. Rev. Nucl. Part. Sci. 56, 569 (2006), hep-ph/0603118.

    Article  ADS  Google Scholar 

  4. F. T. Avignone, III, S. R. Elliott, and J. Engel, Rev. Mod. Phys. 80, 481 (2008), arXiv:0708.1033 [nucl-ex].

    Article  ADS  Google Scholar 

  5. M. Fukugita and T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, Berlin, 2003), pp. 461–479.

    Google Scholar 

  6. GEMMA Collab. (A. G. Beda et al.), Phys. Part. Nucl. Lett. 7, 406 (2010), arXiv:0906.1926 [hep-ex].

    Article  Google Scholar 

  7. BOREXINO Collab. (C. Arpesella et al.), Phys. Rev. Lett. 101, 091302 (2008), arXiv:0805.3843 [astro-ph].

    Article  Google Scholar 

  8. S. I. Blinnikov and N. V. Dunina-Barkovskaya, Mon. Not. R. Astron. Soc. 266, 289 (1994); G. G. Raffelt, Phys. Rept. 320, 319 (1999).

    ADS  Google Scholar 

  9. E. Kh. Akhmedov and J. Pulido, Phys. Lett. B 553, 7 (2003), hep-ph/0209192.

    Article  ADS  Google Scholar 

  10. S. Akiyama et al., Astrophys. J. 584, 954 (2003), astro-ph/0208128.

    Article  ADS  Google Scholar 

  11. M. B. Voloshin, Phys. Lett. B 209, 360 (1988).

    Article  ADS  Google Scholar 

  12. A. B. Balantekin, C. Volpe, and J. Welzel, JCAP 0709, 016 (2007), arXiv:0706.3023 [astro-ph].

    ADS  Google Scholar 

  13. D. Nötzold, Phys. Rev. D 38, 1658 (1988); R. Barbieri and R. N. Mohapatra, Phys. Rev. Lett. 61, 27 (1988); A. Ayala, J. C. D’Olivo, and M. Torres, Nucl. Phys. B 564, 204 (2000), hep-ph/9907398; A. V. Kuznetsov and N. V. Mikheev, JCAP 0711, 031 (2007), arXiv:0709.0110 [hep-ph]; A. V. Kuznetsov, N. V. Mikheev, and A. A. Okrugin, Int. J. Mod. Phys. A 24, 5977 (2009), arXiv:0907.2905 [hep-ph]; O. V. Lychkovskiy and S. I. Blinnikov, Phys. Atom. Nucl. 73, 614 (2010), arXiv:0905.3658 [hep-ph].

    Article  ADS  Google Scholar 

  14. M. Dvornikov, Phys. Lett. B 610, 262 (2005), hep-ph/0411101; arXiv:1001.2516 [hep-ph]; M. S. Dvornikov, Phys. Atom. Nucl. 72, 116 (2009), hep-ph/0610047; M. Dvornikov and J. Maalampi, Phys. Rev. D 79, 113015 (2009), arXiv:0809.0963 [hep-ph].

    ADS  Google Scholar 

  15. M. Dvornikov, Eur. Phys. J. C 47, 437 (2006), hep-ph/0601156.

    Article  ADS  Google Scholar 

  16. M. Dvornikov, J. Phys. Conf. Ser. 110, 082005 (2008), arXiv:0708.2975 [hep-ph].

    Article  ADS  Google Scholar 

  17. M. Dvornikov, J. Phys. G 35, 025003 (2008), arXiv:0708.2328 [hep-ph].

    Article  ADS  Google Scholar 

  18. M. Dvornikov and J. Maalampi, Phys. Lett. B 657, 217 (2007), hep-ph/0701209.

    ADS  Google Scholar 

  19. D. Nötzold and G. G. Raffelt, Nucl. Phys. B 307, 924 (1988); E. Elizalde, E. J. Ferrer, and V. de la Incera, Phys. Rev. D 70, 043012 (2004), hep-ph/0404234; C. M. Ho, D. Boyanovsky, and H. J. de Vega, Phys. Rev. D 72, 085016 (2005), hep-ph/0508294.

    Article  ADS  Google Scholar 

  20. M. Dvornikov and A. Studenikin, JHEP 0209, 016 (2002), hep-ph/0202113.

    Article  ADS  Google Scholar 

  21. A. E. Bernardini and S. De Leo, Phys. Rev. D 70, 053010 (2004), hep-ph/0411134; Eur. Phys. J. C 37, 471 (2004), hep-ph/0411153; Phys. Rev. D 71, 076008 (2005), hep-ph/0504239.

    Article  ADS  Google Scholar 

  22. K. Zuber, Neutrino Physics (IOP Publ., Bristol, 2004), pp. 19–22.

    Book  Google Scholar 

  23. A. Studenikin and A. Ternov, Phys. Lett. B 608, 107 (2005), hep-ph/0412408; A. E. Lobanov, Phys. Lett. B 619, 136 (2005), hep-ph/0506007.

    Article  ADS  Google Scholar 

  24. C. Giunti and A. Studenikin, Phys. Atom. Nucl. 72, 2089 (2009), arXiv:0812.3646 [hep-ph].

    Article  ADS  Google Scholar 

  25. C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, NY, 1980), p. 693.

    Google Scholar 

  26. P. Keränen, et al., Phys. Lett. B 574, 162 (2003), hep-ph/0307041; 597, 374 (2004), hep-ph/0401082; J.Maalampi and J. Riittinen, Phys. Rev.D81, 037301 (2010), arXiv:0912.4628 [hep-ph]; A. Esmaili, Phys. Rev. D 81, 013006 (2010), arXiv:0909.5410 [hep-ph]; V. A. Kutvitskii, V. B. Semikoz, and D. D. Sokoloff, Astron. Rep. 53, 166 (2009), arXiv:0809.3172 [astro-ph]; C. R. Das, J. Pulido, and M. Picariello, Phys. Rev. D 79, 073010 (2009), arXiv:0902.1310 [hep-ph].

    Article  ADS  Google Scholar 

  27. C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford Univ. Press, Oxford, 2007), pp. 229–231.

    Book  Google Scholar 

  28. E. Kh. Akhmedov, A. Lanza, and D.W. Sciama, Phys. Rev. D 56, 6117 (1997), hep-ph/9702436.

    Article  ADS  Google Scholar 

  29. R. Tòmas et al., JCAP 0409, 015 (2004), astro-ph/0407132.

    ADS  Google Scholar 

  30. A.M. Malinovsky et al., Astron. Lett. 34, 445 (2008).

    Article  ADS  Google Scholar 

  31. G. G. Raffelt, Phys. Rev. Lett. 64, 2856 (1990).

    Article  ADS  Google Scholar 

  32. M. Kachelrie et al., Phys. Rev. D 65, 073016 (2002), hep-ph/0108100.

    Article  ADS  Google Scholar 

  33. R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics, 3rd ed. (World Sci., Singapore, 2003), pp. 101–106.

    Google Scholar 

  34. T. Totani and K. Sato, Phys. Rev. D 54, 5975 (1996), astro-ph/9609035.

    Article  ADS  Google Scholar 

  35. C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, NY, 1980), pp. 60–63.

    Google Scholar 

  36. L. D. Landau and E. M. Lifschitz, Quantum Mechanics: Nonrelativistic Theory (Pergamon, Oxford, 1991), pp. 142–146.

    Google Scholar 

  37. E. Kh. Akhmedov and M. Yu. Khlopov, Sov. J. Nucl. Phys. 47, 689 (1988).

    Google Scholar 

  38. H. Nunokawa et al., Nucl. Phys. B 501, 17 (1997), hep-ph/9701420.

    Article  ADS  Google Scholar 

  39. A. E. Lobanov, and A. I. Studenikin, Phys. Lett. B 515, 94 (2001), hep-ph/0106101; A. Grigoriev, A. Lobanov, and A. Studenikin, Phys. Lett. B 535, 187 (2002), hep-ph/0202276.

    Article  ADS  Google Scholar 

  40. K. Sumiyoshi et al., Astrophys. J. 629, 922 (2005), astro-ph/0506620.

    Article  ADS  Google Scholar 

  41. N. F. Bell et al., Phys. Rev. Lett. 95, 151802 (2005), hep-ph/0504134.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dvornikov.

Additional information

Original Russian Text © M.S. Dvornikov, 2012, published in Yadernaya Fizika, 2012, Vol. 75, No. 2, pp. 249–261.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvornikov, M.S. Spin-flavor oscillations of Dirac neutrinos described by relativistic quantum mechanics. Phys. Atom. Nuclei 75, 227–238 (2012). https://doi.org/10.1134/S1063778812020068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812020068

Keywords

Navigation