Skip to main content
Log in

Neutrino Spin and Flavor Oscillations in Gravitational Fields

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We study spin and flavor oscillations of astrophysical neutrinos under the influence of external fields in curved spacetime. First, we consider spin oscillations in case of neutrinos gravitationally scattered off a rotating supermassive black hole surrounded by a thin magnetized accretion disk. We find that the gravitational interaction only does not result in the spin-flip of scattered ultrarelativistic neutrinos. Realistic magnetic fields lead to the significant reduction of the observed flux of neutrinos possessing reasonable magnetic moments. Second, we study neutrino flavor oscillations in stochastic gravitational waves (GWs). We derive the effective Hamiltonian for neutrinos interacting with a plane GW having an arbitrary polarization. Then, we consider stochastic GWs with arbitrary correlators of amplitudes. The equation for the density matrix for neutrino oscillations is solved analytically and the probabilities to detect certain neutrino flavors are derived. We find that the interaction of neutrinos, emitted by a core-collapsing supernova, with the stochastic GW background results in the several percent change of the neutrino fluxes. The observability of the predicted effects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Abbott et al. (LIGO Scientific Collab., Virgo Collab., and KAGRA Collab.), “GWTC-3: Compact Binary coalescences observed by LIGO and Virgo during the second part of the third observing run,” (2021). arXiv:2111.03606.

  2. K. Akiyama et al. (Event Horizon Telescope Collab.), “First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way,” Astrophys. J. Lett. 930, L12 (2022).

    Article  ADS  Google Scholar 

  3. M. Dvornikov, “Neutrino spin oscillations in gravitational fields,” Int. J. Mod. Phys. D 15, 1017–1034 (2006). hep-ph/0601095.

    Article  ADS  MATH  Google Scholar 

  4. M. Dvornikov, “Neutrino spin oscillations in matter under the influence of gravitational and electromagnetic fields,” J. Cosmol. Astropart. Phys. 06, 015 (2013). arXiv:1306.2659.

  5. M. Dvornikov, “Neutrino spin oscillations in external fields in curved spacetime,” Phys. Rev. D 99, 116021 (2019). arXiv:1902.11285.

  6. M. Dvornikov, “Spin effects in neutrino gravitational scattering,” Phys. Rev. D 101, 056018 (2020). arXiv: 1911.08317.

  7. M. Dvornikov, “Spin oscillations of neutrinos scattered off a rotating black hole,” Eur. Phys. J. C 80, 474 (2020). arXiv:2006.01636.

  8. M. Dvornikov, “Neutrino scattering off a black hole surrounded by a magnetized accretion disk,” J. Cosmol. Astropart. Phys. 04, 005 (2021). arXiv:2102.00806.

  9. M. Dvornikov, “Neutrino flavor oscillations in stochastic gravitational waves,” Phys. Rev. D 100, 096014 (2019). arXiv:1906.06167.

  10. M. Dvornikov, “Flavor ratios of astrophysical neutrinos interacting with stochastic gravitational waves having arbitrary spectra,” J. Cosmol. Astropart. Phys. 12, 022 (2020). arXiv:2009.02195.

  11. M. Dvornikov, “Interaction of supernova neutrinos with stochastic gravitational waves,” Phys. Rev. D 104, 043018 (2021). arXiv:2103.15464.

  12. S. Chandrasekar, The Mathematical Theory of Black Holes, Part 2 (Clarendon Press, 1998, Mir, Moscow, 1986).

  13. A. A. Pomeransky and I. B. Khriplovich, “Equations of motion of spinning relativistic particle in external fields,” J. Exp. Theor. Phys. 86, 839–849 (1998). gr-qc/9710098.

    Article  ADS  Google Scholar 

  14. R. M. Wald, “Black hole in a uniform magnetic field,” Phys. Rev. D 10, 1680–1685 (1974).

    Article  ADS  Google Scholar 

  15. R. D. Blandford and D. G. Payne, “Hydromagnetic flows from accretion discs and the production of radio jets,” Mon. N. Roy. Astron. Soc. 199, 883–903 (1982).

    Article  ADS  MATH  Google Scholar 

  16. V. S. Beskin, MHD Flows in Compact Astrophysical Objects: Accretion, Winds and Jets (Springer, Heidelberg, 2010).

    Book  MATH  Google Scholar 

  17. N. F. Bell, V. Cirigliano, M. J. Ramsey-Musolf, P. Vogel, and M. B. Wise, “How magnetic is the Dirac neutrino?,” Phys. Rev. Lett. 95, 151802 (2005). hep-ph/0504134.

    Article  ADS  Google Scholar 

  18. N. Viaux, M. Catelan, P. B. Stetson, G. G. Raffelt, J. Redondo, A. A. R. Valcarce, and A. Weiss, “Particle-physics constraints from the globular cluster M5: Neutrino dipole moments,” Astron. Astrophys. 558, A12 (2013). arXiv:1308.4627.

    Article  ADS  Google Scholar 

  19. G. Lambiase, G. Papini, R. Punzi, and G. Scarpetta, “Neutrino optics and oscillations in gravitational fields,” Phys. Rev. D 71, 073011 (2005). gr-qc/0503027.

    Article  ADS  MATH  Google Scholar 

  20. N. Christensen, “Stochastic gravitational wave backgrounds,” Rep. Prog. Phys. 82, 016903 (2019). arXiv: 1811.08797.

  21. P. A. Rosado, “Gravitational wave background from binary systems,” Phys. Rev. D 84, 084004 (2011). arXiv: 1106.5795.

    Article  ADS  Google Scholar 

  22. F. An et al., “Neutrino physics with JUNO,” J. Phys. G 43, 030401 (2016). arXiv:1507.05613.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dvornikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvornikov, M.S. Neutrino Spin and Flavor Oscillations in Gravitational Fields. Phys. Part. Nuclei Lett. 20, 461–465 (2023). https://doi.org/10.1134/S154747712303024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747712303024X

Navigation