Skip to main content
Log in

Attenuation of Λ(1520) Hyperons in near-threshold pA reactions

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In the framework of the nuclear spectral function approach for incoherent primary proton-nucleon and secondary pion-nucleon production processes we study the inclusive Λ(1520)-hyperon production in the interaction of 2.83-GeV protons with nuclei. In particular, the A and momentum dependences of the absolute and relative Λ(1520)-hyperon yields are investigated within the different scenarios for their in-medium width. Our model calculations show that the pion-nucleon production channel contributes distinctly to the “low-momentum” Λ(1520) creation both in light and heavy nuclei in the chosen kinematics and, hence, has to be taken into consideration on close examination of the dependences of the Λ(1520)-hyperon yields on the target mass number with the aim to get information on their width in the medium. They also demonstrate that both the A dependence of the relative Λ(1520)-hyperon production cross section and momentum dependence of the absolute Λ(1520)-hyperon yield at incident energy of interest are appreciably sensitive to the Λ(1520) in-medium width, which means that these observables may be an important tool to determine the above width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Hayano and T. Hatsuda, arXiv: 0812.1702 [nucl-ex]; S. Leupold, V.Metag, and U.Mosel, nuclth/0907.2388.

  2. M. M. Kaskulov and E. Oset, arXiv: 0512108 [nuclth].

  3. M.M. Kaskulov and E. Oset, Phys. Rev. C 73, 045213 (2006).

    Article  ADS  Google Scholar 

  4. T. Hatsuda and S. H. Lee, Phys. Rev. C 46, R34 (1992).

    Article  ADS  Google Scholar 

  5. F. Klingl, T. Waas, and W. Weise, Phys. Lett. B 431, 254 (1998).

    Article  ADS  Google Scholar 

  6. E. Oset and A. Ramos, Nucl. Phys. A 679, 616 (2001).

    Article  ADS  Google Scholar 

  7. D. Cabrera and M. J. Vicente Vacas, Phys. Rev. C 67, 045203 (2003).

    Article  ADS  Google Scholar 

  8. V. K. Magas, L. Roca, and E. Oset, Phys. Rev. C 71, 065202 (2005).

    Article  ADS  Google Scholar 

  9. D. Cabrera et al., Nucl. Phys. A 733, 130 (2004).

    Article  ADS  Google Scholar 

  10. P. Muehlich and U. Mosel, Nucl. Phys. A 765, 188 (2006).

    Article  ADS  Google Scholar 

  11. T. Ishikawa et al., Phys. Lett. B 608, 215 (2005).

    Article  ADS  Google Scholar 

  12. A. Sibirtsev, H.-W. Hammer, and U.-G. Meissner, Eur. Phys. J. A 37, 287 (2008).

    Article  ADS  Google Scholar 

  13. A. Sibirtsev et al., Eur. Phys. J. A 29, 209 (2006).

    Article  ADS  Google Scholar 

  14. E. Ya. Paryev, Yad. Fiz. 71, 1985 (2008) [Phys. At. Nucl. 71, 1954 (2008)].

    Google Scholar 

  15. E. Ya. Paryev, J. Phys. G 36, 015103 (2009).

    Article  ADS  Google Scholar 

  16. P. Muehlich and U. Mosel, Nucl. Phys. A 773, 156 (2006).

    Article  ADS  Google Scholar 

  17. M. Kaskulov, E. Hernandez, and E. Oset, Eur. Phys. J. A 31, 245 (2007).

    Article  ADS  Google Scholar 

  18. E. Oset, M. Kaskulov, H. Nagahiro, et al., arXiv: 0710.3033 [nucl-th].

  19. M. Kotulla et al., Phys. Rev. Lett. 100, 192302 (2008).

    Article  ADS  Google Scholar 

  20. M. Kaskulov, L. Roca, and E. Oset, Eur. Phys. J. A 28, 139 (2006).

    Article  ADS  Google Scholar 

  21. M. Hartmann, Yu. Kiselev, et al., ANKE-COSY Proposal No. 147 (2005).

  22. C. H. Lee et al., Phys. Lett. B 412, 235 (1997).

    Article  ADS  Google Scholar 

  23. Z. Rudy et al., Eur. Phys. J. A 15, 303 (2002).

    Article  ADS  Google Scholar 

  24. Z. Rudy et al., nucl-th/0411009.

  25. M. L. Benabderrahmane et al., arXiv: 0807.3361 [nucl-ex].

  26. E. Ya. Paryev, Eur. Phys. J. A 23, 453 (2005).

    Article  ADS  Google Scholar 

  27. O. Benhar, nucl-th/0307061.

  28. Y. Nara, A. Ohnishi, T. Harada, and A. Engel, Nucl. Phys. A 614, 433 (1997).

    Article  ADS  Google Scholar 

  29. V. Flaminio et al., CERN-HERA 79-03 (1979).

  30. T. Yao, Phys. Rev. 125, 1048 (1962).

    Article  ADS  Google Scholar 

  31. C. M. Ko, Phys. Rev. C 29, 2169 (1984).

    Article  ADS  Google Scholar 

  32. A. Sibirtsev, Nucl. Phys. A 604, 455 (1996).

    Article  ADS  Google Scholar 

  33. V. Flaminio et al., CERN-HERA 79-01 (1979).

  34. Y. Maeda et al., Phys. Rev. C 77, 015204 (2008).

    Article  ADS  Google Scholar 

  35. S. V. Efremov and E. Ya. Paryev, Eur. Phys. J. A 1, 99 (1998).

    Article  ADS  Google Scholar 

  36. E. Ya. Paryev, Eur. Phys. J. A 7, 127 (2000).

    Article  ADS  Google Scholar 

  37. E. Ya. Paryev, Eur. Phys. J. A 9, 521 (2000).

    Article  ADS  Google Scholar 

  38. E. Ya. Paryev, Eur. Phys. J. A 17, 145 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paryev, E.Y. Attenuation of Λ(1520) Hyperons in near-threshold pA reactions. Phys. Atom. Nuclei 73, 2035–2047 (2010). https://doi.org/10.1134/S1063778810120094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778810120094

Keywords

Navigation