Skip to main content
Log in

Rate of excited-nucleus fission within a multidimensional stochastic approach

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A stochastic approach to describing the dynamics of the nuclear-fission process is applied to study the effect of the number of dimensions on the fission rate within the dynamical model used. The time dependence of the fission rate is calculated on the basis of a multidimensional Langevin equation without taking into account particle evaporation. The one-, two-, and three-dimensional cases are considered for the example of the “c, h, α” parametrization of nuclear-surface shapes. The calculations are performed for a large number of compound nuclei whose parameter Z 2/A falls within the range 20 ≤ Z 2/A ≤ 40. The stationary level of the fission rate is found to increase considerably upon going over from the one- to the three-dimensional case. This increase is especially pronounced for light fissile nuclei in the vicinity of the Businaro-Gallone point. Also, the stationary fission-rate level obtained from our dynamical simulation is compared with its counterpart calculated by the Kramers formula generalized to the multidimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Weidenmüller, Prog. Part. Nucl. Phys. 3, 49 (1980).

    Article  ADS  Google Scholar 

  2. P. Grangé, L. Jin-Qing, and H. A. Weidenmüller, Phys. Rev. C 27, 2063 (1983).

    Article  ADS  Google Scholar 

  3. Y. Abe, S. Grégoire, and H. Delagrange, J. Phys. Colloq. 47, C4 (1986).

    Google Scholar 

  4. K. V. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer, Berlin, 1985; Mir, Moscow, 1986).

    Google Scholar 

  5. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 1981; Vyssh. Shkola, Moscow, 1990).

    MATH  Google Scholar 

  6. N. D. Mavlitov, P. Fröbrich, and I. I. Gontchar, Z. Phys. A 342, 195 (1992).

    Article  ADS  Google Scholar 

  7. I. I. Gontchar, P. Fröbrich, and N. I. Pischasov, Phys. Rev. C 47, 2228 (1993).

    Article  ADS  Google Scholar 

  8. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).

    Article  ADS  Google Scholar 

  9. Y. Abe, S. Ayik, P.-G. Reinhard, and E. Suraud, Phys. Rep. 275, 49 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  10. N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  MATH  ADS  Google Scholar 

  11. P. Fröbrich and I. I. Gontchar, Phys. Rep. 292, 131 (1998).

    Article  ADS  Google Scholar 

  12. H. A. Kramers, Physica 7, 284 (1940).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. V.M. Strutinsky, Phys. Lett. B 47, 121 (1973).

    Article  ADS  Google Scholar 

  14. V. M. Strutinskiĭ, Yad. Fiz. 19, 259 (1974) [Sov. J. Nucl. Phys. 19, 127 (1974)].

    Google Scholar 

  15. H. J. Krappe, in Proc. of XIII Meeting on the Physics of Nuclear Fission in Memory of Prof. G. N. Smirenkin, Obninsk, 1995, Ed. bu V. D. Kuzminov (SSCRF-IPPE, Obninsk, 1995), p. 134.

    Google Scholar 

  16. G. D. Adeev, A. V. Karpov, P. N. Nadtochy, and D. V. Vanin, Fiz. Élem. Chastits At. Yadra 36, 732 (2005) [Phys. Part. Nucl. 36, 378 (2005)].

    Google Scholar 

  17. H. S. Brinkmann, Physica (Amsterdam) 22, 149 (1956).

    Article  ADS  Google Scholar 

  18. R. Landauer and J. A. Swanson, Phys. Rev. 121, 1668 (1961).

    Article  ADS  Google Scholar 

  19. J. S. Langer, Phys. Rev. Lett. 21, 973 (1968).

    Article  ADS  Google Scholar 

  20. J. S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969).

    Article  ADS  Google Scholar 

  21. H. A. Weidenmüller and Z. Jing-Shang, J. Stat. Phys. 34, 191 (1984).

    Article  ADS  Google Scholar 

  22. Z. Jing-Shang and H. A. Weidenmüller, Phys. Rev. C 28, 2190 (1983).

    Article  ADS  Google Scholar 

  23. D. M. Brink and L. F. Canto, J. Phys. G 12, L147 (1986).

    Article  ADS  Google Scholar 

  24. T. Wada, N. Carjan, and Y. Abe, Nucl. Phys. A 538, 283c (1992).

    Article  ADS  Google Scholar 

  25. P. Frobrich and G.-R. Tillack, Nucl. Phys. A 540, 353 (1992).

    Article  ADS  Google Scholar 

  26. P. N. Nadtochy, A. Kelic, and K. H. Schmidt, Phys. Rev. C 75, 064614 (2007).

    Article  ADS  Google Scholar 

  27. S. Pal, G. Chaudhuri, and J. Sadhukhan, Nucl. Phys. A 808, 1 (2008).

    Article  ADS  Google Scholar 

  28. P. Fröbrich and A. Ecker, Eur. Phys. J. D 3, 237 (1998).

    Article  ADS  Google Scholar 

  29. M. Brack, J. Damgaard, A. S. Jensen, et al., Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  30. P. N. Nadtochy and G. D. Adeev, Phys. Rev. C 72, 054608 (2005).

    Article  ADS  Google Scholar 

  31. A. V. Ignatyuk, M. G. Itkis, V. N. Okolovich, et al., Yad. Fiz. 21, 1185 (1975) [Sov. J. Nucl. Phys. 21, 612 (1975)].

    Google Scholar 

  32. W. D. Myers and W. J. Swiatecki, Ark. Phys. 36, 343 (1967).

    Google Scholar 

  33. H. J. Krappe, J. R. Nix, and A. J. Sierk, Phys. Rev.C 20, 992 (1979).

    Article  ADS  Google Scholar 

  34. A. J. Sierk, Phys. Rev. C 33, 2039 (1986).

    Article  ADS  Google Scholar 

  35. K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys.Rev. C 13, 2385 (1976).

    Article  ADS  Google Scholar 

  36. I. Kelson, Phys. Rev. B 136, 1667 (1964).

    Article  ADS  Google Scholar 

  37. J. Blocki, Y. Boneh, J. R. Nix, et al., Ann.Phys. (N.Y.) 113, 330 (1978).

    Article  ADS  Google Scholar 

  38. J. R. Nix and A. J. Sierk, in Proc. of the Intern. School-Seminar on Heavy Ion Physics, Dubna, USSR, 1986, Ed. by M. I. Zarubina and E.V. Ivashkevich (JINR, Dubna, 1987), p. 453.

    Google Scholar 

  39. J. R. Nix and A. J. Sierk, in Proc. of the 6th Adriatic Conf. on Nuclear Physics: Frontiers of Heavy Ion Physics, Dubrovnik, Yugoslavia, 1987, Ed. by N. Cindro, R. Caplar, and W. Greiner (World Sci., Singapore, 1990), p. 333.

    Google Scholar 

  40. A. V. Karpov, P. N. Nadtochy, D. V. Vanin, and G. D. Adeev, Phys. Rev. C 63, 054610 (2001).

    Article  ADS  Google Scholar 

  41. P. N. Nadtochy, G. D. Adeev, and A. V. Karpov, Phys. Rev. C 65, 064615 (2002).

    Article  ADS  Google Scholar 

  42. P. N. Nadtochy, A. V. Karpov, and G. D. Adeev, Yad. Fiz. 65, 832 (2002) [Phys. At. Nucl. 65, 799 (2002)].

    Google Scholar 

  43. D. J. Higham, SIAM Rev. 43, 525 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  44. V. M. Strutinsky, N. Ya. Lyashchenko, and N. A. Popov, Nucl. Phys. 46, 639 (1963).

    Article  Google Scholar 

  45. I. I. Gontchar and P. Fröbrich, Nucl. Phys. A 551, 495 (1993).

    Article  ADS  Google Scholar 

  46. R. Becker, Theorie der Wärme (Springer, Berlin, Heidelberg, 1966).

    Google Scholar 

  47. H. Hofmann and J. R. Nix, Phys. Lett. 122, 117 (1983).

    Google Scholar 

  48. J.-D. Bao and Y. Jia, Phys. Rev. C 69, 027602 (2004).

    Article  ADS  Google Scholar 

  49. M. G. Itkis, Yu. A. Muzychka, Yu. Ts. Oganessian, et al., Yad. Fiz. 58, 2140 (1995) [Phys. At. Nucl. 58, 2026 (1995)].

    Google Scholar 

  50. M. G. Itkis and A. Ya. Rusanov, Fiz. Élem. Chastits At. Yadra 29, 389 (1998) [Phys. Part. Nucl. 29, 160 (1998)].

    Google Scholar 

  51. E. G. Ryabov and G. D. Adeev, Yad. Fiz. 68, 1583 (2005) [Phys. At. Nucl. 68, 1525 (2005)].

    Google Scholar 

  52. I. I. Gontchar and G. I. Kosenko, Yad. Fiz. 53, 133 (1991) [Sov. J. Nucl. Phys. 53, 86 (1991)].

    Google Scholar 

  53. I. I. Gontchar, A. E. Gettinger, L. I. Gur’yan, and W. Wagner, Yad. Fiz. 63, 1778 (2000) [Phys. At. Nucl. 63, 1688 (2000)].

    Google Scholar 

  54. I. I. Gontchar, Fiz. Élem. Chastits At. Yadra 26, 932 (1995) [Phys. Part. Nucl. 26, 394 (1995)].

    Google Scholar 

  55. P. Fröbrich, I. I. Gontchar, and N. D. Mavlitov, Nucl. Phys. A 556, 281 (1993).

    Article  ADS  Google Scholar 

  56. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Lan’, St.-Petersburg, 2003).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Anischenko.

Additional information

Original Russian Text © Yu.A. Anischenko, A.E. Gegechkori, P.N. Nadtochy, G.D. Adeev, 2009, published in Yadernaya Fizika, 2009, Vol. 72, No. 12, pp. 2056–2068.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anischenko, Y.A., Gegechkori, A.E., Nadtochy, P.N. et al. Rate of excited-nucleus fission within a multidimensional stochastic approach. Phys. Atom. Nuclei 72, 1992–2004 (2009). https://doi.org/10.1134/S1063778809120035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778809120035

Keywords

Navigation