Skip to main content
Log in

Asymptotic normalization coefficients (nuclear vertex constants) for p + 7Be → 8B and the direct 7Be(p, γ)8B astrophysical S factors at solar energies

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A new analysis of the precise experimental astrophysical S factors for the direct-capture reaction 7Be(p, γ)8B [A.J. Junghans et al., Phys. Rev. C 68, 065803 (2003) and L.T. Baby et al., Phys. Rev. C 67, 065805 (2003)] is carried out on the basis of a modified two-body potential approach in which the direct astrophysical S factor, S 17(E), is expressed in terms of the asymptotic normalization constants for p + 7Be → 8B and two additional conditions are involved to verify the peripheral character of the reaction under consideration. The Woods-Saxon potential form is used for the bound-(p + 7Be)-state wave function and for p 7Be-scattering wave function. New estimates are obtained for the “indirectly measured” values of the asymptotic normalization constants (the nuclear vertex constants) for the p + 7Be → 8B and S 17(E) at E ≤ 115 keV, including E = 0. These values of S 17(E) and asymptotic normalization constants have been used for obtaining the indirectly measured values of the s-wave average scattering length and the p-wave effective-range parameters for p 7Be scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Bahcall, Neutrino Astrophysics (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  2. J. N. Bahcall, S. Basu, and M.H. Pinsonneault, Phys. Lett. B 433, 1 (1998).

    Article  ADS  Google Scholar 

  3. SNO Collab. (S. N. Ahmed et al.), Phys. Rev. Lett. 92, 181301 (2004).

  4. F. C. Barker, Nucl. Phys. A 588, 693 (1995).

    Article  ADS  Google Scholar 

  5. E. G. Adelberger, S. M. Austin, J. N. Bahcall, et al., Rev. Mod. Phys. 70, 1265 (1998).

    Article  ADS  Google Scholar 

  6. C. Angulo, M. Arnould, M. Rayet, et al., Nucl. Phys. A 656, 3 (1999).

    Article  ADS  Google Scholar 

  7. A. R. Junghans, M. C. Mohrmann, K. A. Snover, et al., Phys. Rev. C 68, 065803 (2003).

    Google Scholar 

  8. P. Descouvemont, and D. Baye, Nucl. Phys. A 567, 341 (1994).

    Article  ADS  Google Scholar 

  9. N. K. Timofeyuk, D. Baye, and P. Descouvemont, Nucl. Phys. A 620, 29 (1997).

    Article  ADS  Google Scholar 

  10. N. K. Timofeyuk, Nucl. Phys. A 632, 19 (1998).

    Article  ADS  Google Scholar 

  11. P. Descouvemont, Phys. Rev. C 70, 065802 (2004); private communication (2007).

  12. R. W. Kavanagh, T. A. Tombrello, J. M. Mosher, and D. R. Goosman, Bull. Am. Phys. Soc. 14, 1209 (1969); R.W. Kavanagh, Nucl. Phys. 15, 411 (1960).

    Google Scholar 

  13. P. D. Parker, Phys. Rev. 150, 851 (1966).

    Article  ADS  Google Scholar 

  14. F. J. Vaughn, R. A. Chalmers, D. Kohler, and L. F. Chase, Jr., Phys. Rev. C 2, 1657 (1970).

    Article  ADS  Google Scholar 

  15. B. W. Filippone, A. J. Elwyn, C. N. Davids, and D. D. Koerte, Phys. Rev. Lett. 50, 412 (1983); Phys. Rev. C 28, 2222 (1983).

    Article  ADS  Google Scholar 

  16. F. Hammache, G. Bogaert, P. Aguer, et al., Phys. Rev. Lett. 80, 928 (1998).

    Article  ADS  Google Scholar 

  17. M. Hass, C. Broude, V. Fedoseev, et al., Phys. Lett. B 462, 237 (1999).

    Article  ADS  Google Scholar 

  18. A. R. Junghans, M. C. Mohrmann, K. A. Snoveret, et al., Phys. Rev. Lett. 88, 041101 (2002).

    Google Scholar 

  19. L. T. Baby, C. Bordeanu, G. Goldring, et al., Phys. Rev. Lett. 90, 022501 (2003); Phys.Rev.C 67, 065805 (2003).

    Google Scholar 

  20. T. Motobayashi, N. Iwasa, Y. Ando, et al., Phys. Rev. Lett. 73, 2680 (1994).

    Article  ADS  Google Scholar 

  21. T. Kikuchi, T. Motobayashi, N. Iwasa, et al., Phys. Lett. B 391, 261 (1997); Eur. Phys. J. A 3, 213 (1998).

    Article  ADS  Google Scholar 

  22. N. Iwasa, F. Boué, G. Surówka, et al., Phys. Rev. Lett. 83, 2910 (1999).

    Article  ADS  Google Scholar 

  23. B. Davids, D. W. Anthony, T. Aumann, et al., Phys. Rev. Lett. 86, 2750 (2001).

    Article  ADS  Google Scholar 

  24. B. Davids, Sam M. Austin, D. Bazin, et al., Phys. Rev. C 63, 065806 (2001).

  25. P. Schümann, F. Hammache, S. Typel, et al., Phys. Rev. Lett. 90, 232501 (2003).

  26. B. Davids and S. Typel, Phys. Rev. C 68, 045802 (2003).

  27. P. Schümann, S. Typel, F. Hammache, et al., Phys. Rev. C 73, 015806 (2006).

  28. H. M. Xu, C. A. Garliargi, R. E. Tribble, et al., Phys. Rev. Lett. 73, 2027 (1994).

    Article  ADS  Google Scholar 

  29. L. D. Blokhintsev, I. Borbely, and E. I. Dolinskii, Fiz. Elem. Chastits At. Yadra 8, 1189 (1977) [Sov. J. Part. Nucl. 8, 485 (1977)].

    Google Scholar 

  30. R. F. Christy and I. Duck, Nucl. Phys. 24, 89 (1961).

    Article  Google Scholar 

  31. A.M. Mukhamedzhanov and N. K. Timofeyuk, JETP Lett. 51, 282 (1990).

    ADS  Google Scholar 

  32. A. M. Mukhamedzhanov, C. A. Gagliardi, and R. E. Tribble, Nucl. Phys. A 688, 277c (2001).

    Article  ADS  Google Scholar 

  33. G. Tabacaru, A. Azhari, J. Brinkley, et al., Phys. Rev. C 73, 025808 (2006).

  34. A. Azhari, V. Burjan, F. Carstoiu, et al., Phys. Rev. Lett. 82, 3960 (1999).

    Article  ADS  Google Scholar 

  35. A. Azhari, V. Burjan, F. Carstoiu, et al., Phys. Rev. C 60, 055803 (1999).

  36. S. B. Igamov and R. Yarmukhamedov, Nucl. Phys. A 781, 247 (2007).

    Article  ADS  Google Scholar 

  37. S. B. Igamov, M. C. Nadirbekov, and R. Yarmukhamedov, Phys. At. Nucl. 70, 1694 (2007).

    Article  Google Scholar 

  38. T. A. Tombrello, Nucl. Phys. 71, 459 (1965).

    Article  Google Scholar 

  39. R. G. Robertson, Phys. Rev. C 7, 543 (1973).

    Article  ADS  Google Scholar 

  40. K. H. Kim, M. H. Park, and B. T. Kim, Phys. Rev. C 35, 363 (1987).

    Article  ADS  Google Scholar 

  41. F. C. Barker, Aust. J. Phys. 33, 177 (1980).

    ADS  MathSciNet  Google Scholar 

  42. F. C. Barker, Phys. Rev. C 28, 1407 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  43. R. G. H. Robertson, P. Dyer, R. A. Warner, et al., Phys. Rev. Lett. 47, 1867 (1981).

    Article  ADS  Google Scholar 

  44. A. M. Mukhamedzhanov, C. A. Gagliardi, and R. E. Tribble, Phys. Rev. C 63, 024612 (2001).

    Google Scholar 

  45. S. A. Goncharov, Ya. Dobesh, E. I. Dolinskii, et al., Yad. Fiz. 35, 662 (1982) [Sov. J. Nucl. Phys. 35, 383 (1982)].

    Google Scholar 

  46. C. R. Brune, R. W. Kavanagh, and C. Rolfs, Phys. Rev. C 50, 2205 (1994).

    Article  ADS  Google Scholar 

  47. I. R. Gulamov, A. M. Mukhamedzhanov, and G. K. Nie, Yad. Fiz. 58, 1789 (1995) [Phys. At. Nucl. 58, 1689 (1995)].

    Google Scholar 

  48. S. V. Artemov, I. R. Gulamov, E. A. Zaparov, et al., Yad. Fiz. 59, 454 (1996) [Phys. At. Nucl. 59, 428 (1996)].

    Google Scholar 

  49. A. M. Mukhamedzhanov, H. L. Clark, C.A. Gagliardi, et al., Phys. Rev. C 56, 1302 (1997).

    Article  ADS  Google Scholar 

  50. Sh. S. Kajumov, A. M. Mukhamedzhanov, R. Yarmukhamedov, and I. Borbely, Z. Phys. A 336, 297 (1990).

    Google Scholar 

  51. R. Yarmukhamedov, Yad. Fiz. 60, 1017 (1997) [Phys. At. Nucl. 60, 910 (1997)].

    Google Scholar 

  52. S. V. Artemov, E. A. Zaparov, G. K. Nie, et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 66, 60 (2002).

    Google Scholar 

  53. C. A. Gagliardi, R. E. Tribble, A. Azhari, et al., Phys. Rev. C 59, 1149 (1999).

    Article  ADS  Google Scholar 

  54. F. C. Barker and A. M. Mukhamedzhanov, Nucl. Phys. A 673, 526 (2000).

    Article  ADS  Google Scholar 

  55. C. Rolfs, Nucl. Phys. A 217, 29 (1973).

    Article  ADS  Google Scholar 

  56. A. M. Mukhamedzhanov, and N. K. Timofeyuk, Yad. Fiz. 51, 679 (1990) [Sov. J. Nucl. Phys. 51, 431 (1990)].

    Google Scholar 

  57. L. Thache, A. Azhari, F. Carstoiu, et al., Phys. Rev. C 67, 062801(R) (2003).

  58. L. Trache, F. Carstoiu, C. A. Garliardi, and R. E. Tribble, Phys. Rev. Lett. 87, 271102 (2001).

    Google Scholar 

  59. C. Angulo, M. Azzouz, P. Descouvemont, et al., Nucl. Phys. A 716, 211 (2003).

    Article  ADS  Google Scholar 

  60. B. K. Jennings, S. Karataglidis, and T. D. Shoppa, Phys. Rev. C 58, 3711 (1998).

    Article  ADS  Google Scholar 

  61. D. Baye and E. Brains, Phys. Rev. C 61, 025801 (2000).

  62. S. Cohen and D. Kurath, Nucl. Phys. A 101, 1 (1967).

    Article  ADS  Google Scholar 

  63. G. Baur, C. A. Bertulani, and H. Rebel, Nucl. Phys. A 458, 118 (1986).

    Google Scholar 

  64. C. A. Bertulani and G. Baur, Phys. Rep. 163, 299 (1988).

    Article  ADS  Google Scholar 

  65. C. A. Bertulani and G. Baur, Nucl. Phys. A 480, 615 (1988).

    Article  ADS  Google Scholar 

  66. H. Esbensen and G. F. Bertsch, Nucl. Phys. A 600, 37 (1996).

    Article  ADS  Google Scholar 

  67. S. Typel and G. Baur, Phys. Rev. C 50, 2104 (1994).

    Article  ADS  Google Scholar 

  68. C. A. Bertulani, Nucl. Phys. A 587, 318 (1995).

    Article  ADS  Google Scholar 

  69. E. O. Alt and A. M. Mukhamedzhanov, Phys. Rev. A 47, 2004 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  70. A. M. Mukhamedzhanov and M. Leiber, Phys. Rev. A 54, 3078 (1996).

    Article  ADS  Google Scholar 

  71. S. B. Igamov, B. F. Irgaziev, and R. Yarmukhamedov, Yad. Fiz. 60, 2194 (1997) [Phys. At. Nucl. 60, 2012 (1997)].

    Google Scholar 

  72. S. B. Igamov and R. Yarmukhamedov, Nucl. Phys. A 673, 509 (2000).

    Article  ADS  Google Scholar 

  73. A. Winther and K. Alder, Nucl. Phys. A 319, 518 (1979).

    Article  ADS  Google Scholar 

  74. E.O. Alt, B. F. Irgaziev, and A. M. Mukhamedzhanov, Phys. Rev. Lett. 90, 122701 (2003).

    Google Scholar 

  75. E.O. Alt, B. F. Irgaziev, and A. M. Mukhamedzhanov, Phys. Rev. C 71, 024605 (2005).

    Google Scholar 

  76. D. Baye, Phys. Rev. C 62, 065803 (2000).

    Google Scholar 

  77. F. C. Barker, Nucl. Phys. A 768, 241 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yarmukhamedov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igamov, S.B., Yarmukhamedov, R. Asymptotic normalization coefficients (nuclear vertex constants) for p + 7Be → 8B and the direct 7Be(p, γ)8B astrophysical S factors at solar energies. Phys. Atom. Nuclei 71, 1740–1755 (2008). https://doi.org/10.1134/S1063778808100098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778808100098

PACS numbers

Navigation