Skip to main content
Log in

Exactly solvable model for the QCD tricritical endpoint

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An inclusion of temperature and chemical-potential-dependent surface-tension in the gas of quark-gluon bags model resolves a long-standing problem of a unified description of the first-and second-order phase transition with the crossover. The suggested model has an exact analytical solution and allows one to rigorously study the vicinity of the critical endpoint of the deconfinement phase transition. It is found that, at the curve of a zero surface-tension coefficient, there must exist the surface-induced phase transition of the seond or higher order. The present model predicts that the critical endpoint of quantum chromodynamics is the tricritical endpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984).

    Article  ADS  Google Scholar 

  2. M. S. Berger and R. L. Jaffe, Phys. Rev. C 35, 213 (1987).

    Article  ADS  Google Scholar 

  3. K. A. Bugaev, Phys. Rev. C 76, 014903 (2007); nuclth/ 0707.2263.

  4. L. G. Moretto, K. A. Bugaev, J. B. Elliott, and L. Phair, hep-ph/0511180.

  5. L. G. Moretto, L. Phair, K. A. Bugaev, and J. B. Elliott, PoS (CPOD2006), 037 (2006).

  6. M. E. Fisher, Physics 3, 255 (1967).

    Google Scholar 

  7. J. B. Elliott, K. A. Bugaev, L. G. Moretto, and L. Phair, nucl-ex/0608022.

  8. S. Das Gupta and A. Z. Mekjian, Phys. Rev. C 57, 1361 (1998).

    Article  ADS  Google Scholar 

  9. K. A. Bugaev, M. I. Gorenstein, I. N. Mishustin, and W. Greiner, Phys. Rev. C 62, 044320 (2000); nuclth/ 0007062; Phys. Lett. B 498, 144 (2001); nuclth/ 0103075.

  10. P. T. Reuter and K. A. Bugaev, Phys. Lett. B 517, 233 (2001).

    Article  ADS  Google Scholar 

  11. K. A. Bugaev, Acta Phys. Pol. B 36, 3083 (2005); nucl-th/0507028.

    ADS  Google Scholar 

  12. K. A. Bugaev, Phys. Part. Nucl. 38, 447 (2007).

    Article  Google Scholar 

  13. L. Beaulieu et al., Phys. Lett. B 463, 159 (1999).

    Article  ADS  Google Scholar 

  14. The EOS Collab. (J. B. Elliott et al.), Phys. Rev. C 62, 064603 (2000).

  15. K. A. Bugaev, L. Phair, and J. B. Elliott, Phys. Rev. E 72, 047106 (2005).

    Google Scholar 

  16. K. A. Bugaev and J. B. Elliott, Ukr. J. Phys. 52, 301 (2007).

    Google Scholar 

  17. M. I. Gorenstein, V. K. Petrov, and G. M. Zinovjev, Phys. Lett. B 106, 327 (1981).

    Article  ADS  Google Scholar 

  18. R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).

    Google Scholar 

  19. L. G. Moretto, K. A. Bugaev, J. B. Elliott, and L. Phair, Europhys. Lett. 76, 402 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. K. A. Bugaev, J. B. Elliott, L. G. Moretto, and L. Phair, hep-ph/0504011.

  21. L. G. Moretto, K. A. Bugaev, J. B. Elliott, and L. Phair, nucl-th/0601010.

  22. D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev. Lett. 50, 2066 (1983).

    Article  ADS  Google Scholar 

  23. J. Liao and E. V. Shuryak, Phys. Rev. D 73, 014509 (2006).

    Google Scholar 

  24. I. Mardor and B. Svetitsky, Phys. Rev. D 44, 878 (1991); G. Lana and B. Svetitsky, Phys. Lett. B 285, 251 (1992).

    Article  ADS  Google Scholar 

  25. G. Neergaard and J. Madsen, Phys. Rev. D 62, 034005 (2000).

    Google Scholar 

  26. J. Ignatius, Phys. Lett. B 309, 252 (1993).

    Article  ADS  Google Scholar 

  27. L. G. Moretto, K. A. Bugaev, J. B. Elliott, et al., Phys. Rev. Lett. 94, 202701 (2005).

    Google Scholar 

  28. B. Krishnamachari et al., Phys. Rev. B 54, 8899 (1996).

    Article  ADS  Google Scholar 

  29. R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).

    Article  ADS  Google Scholar 

  30. M. Stephanov, Acta Phys. Pol. B 35, 2939 (2004).

    ADS  Google Scholar 

  31. F. Karsch and E. Laermann, in Quark-Gluon Plasma 3, Ed. by R. C. Hwa and X. N. Wang (World Sci., Singapore, 2004), p. 1; hep-lat/0305025.

    Google Scholar 

  32. K. A. Bugaev, V. K. Petrov, and G. M. Zinovjev, hepph/0801.4869.

  33. M. I. Gorenstein, M. Gaździcki, and W. Greiner, Phys. Rev. C 72, 024909 (2005).

    Google Scholar 

  34. K. A. Bugaev and P. T. Reuter, Ukr. J. Phys. 52, 489 (2007).

    Google Scholar 

  35. K. A. Bugaev, M. I. Gorenstein, H. Stöcker, and W. Greiner, Phys. Lett. B 485, 121 (2000); G. Zeeb, K. A. Bugaev, P. T. Reuter, and H. Stöcker, nuclth/0209011.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. K. A. Bugaev, Nucl. Phys. A 807, 251 (2008).

    Article  ADS  Google Scholar 

  37. D. B. Blaschke and K. A. Bugaev, Fiz. B 13, 491 (2004); Phys. Part. Nucl. Lett. 2, 305 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bugaev.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugaev, K.A. Exactly solvable model for the QCD tricritical endpoint. Phys. Atom. Nuclei 71, 1585–1593 (2008). https://doi.org/10.1134/S1063778808090147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778808090147

PACS numbers

Navigation