Skip to main content
Log in

Covariant response theory beyond RPA and its application

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The covariant particle-vibration coupling model within the time-blocking approximation is employed to supplement the relativistic random phase approximation (RRPA) with coupling to collective vibrations. The Bethe—Salpeter equation in the particle—hole channel with an energy-dependent residual particle—hole (ph) interaction is formulated and solved in the shell-model Dirac basis as well as in the momentum space. The same set of coupling constants generates the Dirac—Hartree single-particle spectrum, the static part of the residual ph interaction, and the particle-phonon coupling amplitudes. This approach is applied to a quantitative description of damping phenomenon in even—even spherical nuclei with closed shells 208Pb and 132Sn. Since phonon coupling enriches the RRPA spectrum with a multitude of ph ⊗ phonon states, a noticeable fragmentation of giant monopole and dipole resonances is obtained in the examined nuclei. The results are compared with experimental data and results of the nonrelativistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  Google Scholar 

  2. D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  3. Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (N.Y.) 198, 132 (1990).

    Article  ADS  Google Scholar 

  4. G. A. Lalazissis, D. Vretenar, and P. Ring, Eur. Phys. J. A 22, 37 (2004).

    Article  ADS  Google Scholar 

  5. G. A. Lalazissis, M. M. Sharma, P. Ring, and Y. K. Gambhir, Nucl. Phys. A 608, 202 (1996).

    Article  ADS  Google Scholar 

  6. J. Meng and P. Ring, Phys. Rev. Lett. 77, 3963 (1996).

    Article  ADS  Google Scholar 

  7. G. A. Lalazissis, D. Vretenar, and P. Ring, Phys. Rev. 69, 017301 (2004).

    Google Scholar 

  8. G. A. Lalazissis, D. Vretenar, and P. Ring, Nucl. Phys. 650, 133 (1999).

    Article  Google Scholar 

  9. P. Ring, Z.-Y. Ma, N. Van Giai, et al., Nucl. Phys. A 94, 249 (2001).

    Article  ADS  Google Scholar 

  10. N. Paar, P. Ring, T. Nikšić, and D. Vretenar, Phys. Rev. C 67, 034312 (2003).

    Google Scholar 

  11. A. Ansari, Phys. Lett. B 623, 37 (2005).

    Article  ADS  Google Scholar 

  12. E. Litvinova and P. Ring, Phys. Rev. C 73, 044328 (2006).

  13. V. I. Tselyaev, Yad. Fiz. 50, 1252 (1989) [Sov. J. Nucl. Phys. 50, 780 (1989)].

    Google Scholar 

  14. S. P. Kamerdzhiev, G. Ya. Tertychny, and V. I. Tselyaev, Phys. Part. Nucl. 28, 134 (1997).

    Article  Google Scholar 

  15. V. I. Tselyaev, Phys. Rev. C 75, 024306 (2007).

    Google Scholar 

  16. E. V. Litvinova and V. I. Tselyaev, Phys. Rev. C 75, 054318 (2007).

    Google Scholar 

  17. G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540 (1997).

    Article  ADS  Google Scholar 

  18. E. Litvinova, P. Ring, and V. Tselyaev, Phys. Rev. C 75, 064308 (2007).

    Google Scholar 

  19. S. Shlomo and D. H. Youngblood, Phys. Rev. C 47, 529 (1993).

    Article  ADS  Google Scholar 

  20. P. Adrich, A. Klimkiewicz, M. Fallot, et al., Phys. Rev. Lett. 95, 132501 (2005).

    Google Scholar 

  21. ReferenceInput Parameter Library, Version 2, http://www-nds.iaea.org/RIPL-2

  22. V. I. Tselyaev, Izv. Ross. Akad. Nauk, Ser. Fiz. 64, 541 (2000).

    Google Scholar 

  23. D. Sarchi, P.-F. Bortignon, and G. Colo, Phys. Lett. B 601, 27 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Litvinova.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinova, E., Ring, P. & Tselyaev, V. Covariant response theory beyond RPA and its application. Phys. Atom. Nuclei 70, 1380–1385 (2007). https://doi.org/10.1134/S1063778807080108

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807080108

PACS numbers

Navigation