Skip to main content
Log in

Quartic oscillator potential in the γ-rigid regime of the collective geometrical model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A prolate γ-rigid version of the Bohr-Mottelson Hamiltonian with a quartic anharmonic oscillator potential in β collective shape variable is used to describe the spectra for a variety of vibrational-like nuclei. Speculating the exact separation between the two Euler angles and the β variable, one arrives at a differential Schrödinger equation with a quartic anharmonic oscillator potential and a centrifugal-like barrier. The corresponding eigenvalue is approximated by an analytical formula depending only on a single parameter up to an overall scaling factor. The applicability of the model is discussed in connection to the existence interval of the free parameter, which is limited by the accuracy of the approximation, and by comparison with the predictions of the related X(3) and X(3)-β 2 models. The model is applied to qualitatively describe the spectra for nine nuclei which exhibit near-vibrational features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

    Article  ADS  Google Scholar 

  2. F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).

    Article  ADS  Google Scholar 

  3. F. Iachello, A. Arima, The Interacting Boson Approximation Model (Cambridge University Press, Cambridge, 1987).

  4. A. Bohr, B. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953).

    Google Scholar 

  5. A. Bohr, B. Mottelson, Nuclear Structure, Vol. II (Benjamin, Reading, MA, 1975).

  6. A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 14 (1952).

    MathSciNet  Google Scholar 

  7. L. Wilets, M. Jean, Phys. Rev. C 102, 788 (1956).

    Article  ADS  MATH  Google Scholar 

  8. J.M. Arias et al., Phys. Rev. C 68, 041302R (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. O.K. Vorov, V.G. Zelevinsky, Nucl. Phys. A 439, 207 (1985).

    Article  ADS  Google Scholar 

  10. A.S. Davydov, A.A. Chaban, Nucl. Phys. 20, 499 (1960).

    Article  Google Scholar 

  11. D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 632, 238 (2006).

    Article  ADS  Google Scholar 

  12. G. Lévai, J.M. Arias, Phys. Rev. C 69, 014304 (2004).

    Article  ADS  Google Scholar 

  13. A.A. Raduta, P. Buganu, Phys. Rev. C 83, 034313 (2011).

    Article  ADS  Google Scholar 

  14. A.A. Raduta, P. Buganu, J. Phys. G: Nucl. Part. Phys. 40, 025108 (2013).

    Article  ADS  Google Scholar 

  15. A.A. Raduta, R. Budaca, A. Faessler, J. Phys. G: Nucl. Part. Phys. 37, 085108 (2010).

    Article  ADS  Google Scholar 

  16. A.A. Raduta, L. Pacearescu, V. Baran, Phys. Rev. C 67, 014301 (2003).

    Article  ADS  Google Scholar 

  17. A.A. Raduta, F.D. Aaron, I.I. Ursu, Nucl. Phys. A 772, 20 (2006).

    Article  ADS  Google Scholar 

  18. G. Gneuss, W. Greiner, Nucl. Phys. A 171, 449 (1971).

    Article  ADS  Google Scholar 

  19. M. Seetharaman, S.S. Vasan, J. Math. Phys. 27, 1031 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  20. J.B. Krieger, C. Rosenzweig, Phys. Rev. 164, 171 (1967).

    Article  ADS  Google Scholar 

  21. M. Lakshmanan, P. Kaliappan, Phys. Rev. A 49, 3296 (1994).

    Article  ADS  Google Scholar 

  22. P.M. Mathews, M. Seetharaman, S. Raghavan, V.T.A. Bhargava, Pranama J. Phys. 32, 107 (1989).

    Article  Google Scholar 

  23. D.E. Hughes, J. Phys. B: At. Mol. Phys. 10, 3167 (1977).

    Article  ADS  Google Scholar 

  24. F.T. Hioe, Don Macmillen, E.W. Montroll, Phys. Rep. 43, 305 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terziev, Phys. Rev. C 69, 014302 (2004).

    Article  ADS  Google Scholar 

  26. D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terziev, Phys. Rev. C 69, 044316 (2004).

    Article  ADS  Google Scholar 

  27. P. Cejnar, J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009).

    Article  ADS  Google Scholar 

  28. G.A. Lalazissis, S. Raman, At. Data Nucl. Data Tables 71, 1 (1999).

    Article  ADS  Google Scholar 

  29. B. Singh, Nucl. Data Sheets 109, 297 (2008).

    Article  ADS  Google Scholar 

  30. J. Blachot, Nucl. Data Sheets 111, 717 (2010).

    Article  ADS  Google Scholar 

  31. B. Singh, Nucl. Data Sheets 93, 33 (2001).

    Article  ADS  Google Scholar 

  32. M.R. Bhat, Nucl. Data Sheets 89, 797 (2000).

    Article  ADS  Google Scholar 

  33. A. Artna-Cohen, Nucl. Data Sheets 79, 1 (1996).

    Article  ADS  Google Scholar 

  34. C.W. Reich, Nucl. Data Sheets 110, 2257 (2009).

    Article  ADS  Google Scholar 

  35. E. Browne, J.K. Tuli, Nucl. Data Sheets 112, 1115 (2011).

    Article  ADS  Google Scholar 

  36. D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 621, 102 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Budaca.

Additional information

Communicated by K. Yabana

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budaca, R. Quartic oscillator potential in the γ-rigid regime of the collective geometrical model. Eur. Phys. J. A 50, 87 (2014). https://doi.org/10.1140/epja/i2014-14087-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14087-8

Keywords

Navigation