Skip to main content
Log in

Examination of the 16O + 28Si system with microscopic and phenomenological potentials

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The 16O + 28Si reaction has been widely studied both experimentally and theoretically and has been claimed to show indications of chaotic scattering. In order to examine this claim and to address whether reaction models such as the optical one could explain the experimental data, we have analyzed the 16O + 28Si system within the framework of the optical model for ten energies from 29.0 to 45.0 MeV, by using microscopic folded potentials, which are based on M3Y nucleon-nucleon, alpha-alpha effective interactions and a phenomenological shallow potential. All potentials describe the individual angular distributions very well at forward angles. However, they fail to describe the individual angular distributions over the whole angular range up to 180°. Nevertheless, we have been able to explain the experimental data by modifying the surface region of the microscopic real potentials by adding two surface potentials. With these correction potentials, we have obtained very good agreement for the individual angular distributions over the whole angular range for the given energies as well as for the experimental data near the Coulomb barrier. The failure of these optical potentials in explaining the scattering observables of this reaction without corrections puts a question mark on the model and supports the idea of a chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Marti et al., Phys. Lett. B 447, 41 (1999).

    Article  ADS  Google Scholar 

  2. P. Braun-Munzinger, G. M. Berkowitz, M. Gai, et al., Phys. Rev. C 24, 1010 (1981).

    Article  ADS  Google Scholar 

  3. J. Y. Park, W. Greiner, and W. Scheid, Phys. Rev. C 16, 2276 (1977).

    Article  ADS  Google Scholar 

  4. J. Y. Park, W. Scheid, and W. Greiner, Phys. Rev. C 10, 967 (1974).

    Article  ADS  Google Scholar 

  5. P. Braun-Munzinger and J. Barrette, Phys. Rep. 87, 209 (1982).

    Article  ADS  Google Scholar 

  6. W. Sciani, A. Lepine-Szily, F. R. Lichtenthaeler, et al., Nucl. Phys. A 620, 91 (1997).

    Article  ADS  Google Scholar 

  7. J. Barrette, M. J. LeVine, P. Braun-Munzinger, et al., Phys. Rev. Lett. 40, 445 (1978).

    Article  ADS  Google Scholar 

  8. S. Kahana, B. T. Kim, and M. Mermaz, Phys. Rev. C 20, 2124 (1979).

    Article  ADS  Google Scholar 

  9. D. Dehnhard, V. Shkolnik, and M. A. Franey, Phys. Rev. Lett. 40, 1549 (1978).

    Article  ADS  Google Scholar 

  10. S. Kubono, P. D. Bond, and C. E. Thorn, Phys. Lett. B 81, 140 (1979).

    Article  ADS  Google Scholar 

  11. C. H. Dasso, G. Pollarolo, and M. Saraceno, Nucl. Phys. A 602, 77 (1996); C. H. Dasso, M. Gallardo, and M. Saraceno, Nucl. Phys. A 549, 265 (1992).

    Article  ADS  Google Scholar 

  12. G. R. Satchler, Nucl. Phys. A 409, 3c (1983).

    Article  ADS  Google Scholar 

  13. M. El-Azab Farid and M. A. Hassanain, Nucl. Phys. A 678, 39 (2000).

    Article  ADS  Google Scholar 

  14. RIPL-2, Nuclear Matter Densities, IAEA, http://www-nds.iaea.org/RIPL-2/

  15. A. M. Kobos and G. R. Satchler, Nucl. Phys. A 427, 589 (1984).

    Article  ADS  Google Scholar 

  16. M. El-Azab Farid, Z. M. M. Mahmoud, and G. S. Hassan, Nucl. Phys. A 691, 671 (2001).

    Article  ADS  Google Scholar 

  17. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  18. V. G. Neudatchin, V. I. Kukulin, V. L. Korotkikh, and V. P. Korennoy, Phys. Lett. B 34, 581 (1971).

    Article  ADS  Google Scholar 

  19. B. Buck, H. Friedrich, and C. Wheathly, Nucl. Phys. A 275, 246 (1977).

    Article  ADS  Google Scholar 

  20. L. Marquez, Phys. Rev. C 28, 2525 (1983).

    Article  ADS  Google Scholar 

  21. P. Darriulat, G. Igo, H. G. Pughm and H. D. Holmgren, Phys. Rev. 137, B315 (1965).

    Article  ADS  Google Scholar 

  22. G. Spitz, H. Klar and E. W. Schmid, Z. Phys. A 322, 49 (1985).

    Article  Google Scholar 

  23. J. Cook, Comput. Phys. Commun. 25, 125 (1982).

    Article  ADS  Google Scholar 

  24. I. J. Thompson, FRESCO, a Coupled-Channels Code (unpublished).

  25. I. Boztosun, O. Bayrak, and Y. Dagdemir, Int. J. Mod. Phys. E 14, 663 (2005).

    Article  ADS  Google Scholar 

  26. I. Boztosun, Phys. Rev. C 66, 024610 (2002).

    Google Scholar 

  27. A. M. Kobos, G. R. Satchler, and R. S. Mackintosh, Nucl. Phys. A 395, 248 (1983).

    Article  ADS  Google Scholar 

  28. S. Y. Lee, Nucl. Phys. A 311, 518 (1978).

    Article  ADS  Google Scholar 

  29. D. M. Brink and N. Takigawa, Nucl. Phys. A 279, 159 (1977).

    Article  ADS  Google Scholar 

  30. I. Boztosun and W. D. M. Rae, Phys. Rev. C 64, 054607 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocak, G., Karakoc, M. & Boztosun, I. Examination of the 16O + 28Si system with microscopic and phenomenological potentials. Phys. Atom. Nuclei 70, 290–299 (2007). https://doi.org/10.1134/S106377880702010X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377880702010X

PACS numbers

Navigation