Skip to main content
Log in

Elastic scattering analysis using different phenomenological and microscopic potentials for \({}^{7}\)Li \(+ {}^{27}\)Al system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Experimental \({}^{7}\)Li\(+ {}^{27}\)Al elastic scattering angular distributions in the 6–89 MeV laboratory energy range have been re-analysed using different phenomenological and microscopic potentials to investigate the cluster nature of the weakly-bound \({}^{7}\)Li projectile and the associated break-up effect on the elastic scattering data. The consistency of the results obtained within the various implemented potentials was also analysed. A new microscopic dynamical polarisation potential was applied to simulate the significant coupling effect to the break-up channel, which is responsible for the observed reduction in the strength of the implemented real potentials. A reasonable agreement between the considered experimental results and the present theoretical calculations was obtained. The study confirms the absence of the usual threshold anomaly present in nuclear systems involving tightly-bound projectiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J M Figueira et al, Phys. Rev. C 73, 054603 (2006)

    Article  ADS  Google Scholar 

  2. D Patel et al, Pramana – J. Phys. 81, 587 (2013)

    Google Scholar 

  3. K Kalita et al, Phys. Rev. C 73, 024609 (2006)

    Article  ADS  Google Scholar 

  4. J Cook, N M Clarke and R J Griffiths, Nucl. Phys. A 357, 246 (1981)

    Article  ADS  Google Scholar 

  5. D Abriola et al, Nucl. Instrum. Meth. Phys. Res. B 268, 1793 (2010)

    Article  ADS  Google Scholar 

  6. G R Satchler, Phys. Rep. 199, 147 (1991)

    Article  ADS  Google Scholar 

  7. C Mahaux, H Ngo and G R Satchler, Nucl. Phys. A 449, 354 (1986)

    Article  ADS  Google Scholar 

  8. M A Nagarajan, C C Mahaux and G R Satchler, Phys. Rev. Lett. 54, 1136 (1985)

    Article  ADS  Google Scholar 

  9. N Keeley et al, Nucl. Phys. A 571, 326 (1994)

    Article  ADS  Google Scholar 

  10. A M M Maciel et al, Phys. Rev. C 59, 2103 (1999)

    Article  ADS  Google Scholar 

  11. M S Hussein, P R S Gomes, J Lubian and L C Chamon, Phys. Rev. C 73, 044610 (2006)

    Article  ADS  Google Scholar 

  12. J M Figueira et al, Phys. Rev. C 75, 017602 (2007)

    Article  ADS  Google Scholar 

  13. M Zadro et al, Phys. Rev. C 80, 064610 (2009)

    Article  ADS  Google Scholar 

  14. L Fimiani et al, Phys. Rev. C 86, 044607 (2012)

    Article  ADS  Google Scholar 

  15. H Kumawat et al, Phys. Rev. C 78, 044617 (2008)

    Article  ADS  Google Scholar 

  16. N N Deshmukh et al, Phys. Rev. C 83, 024607 (2011)

    Article  ADS  Google Scholar 

  17. J M Figueira et al, Phys. Rev. C 81, 024613 (2010)

    Article  ADS  Google Scholar 

  18. S Santra et al, Phys. Rev. C 83, 034616 (2011)

    Article  ADS  Google Scholar 

  19. S Dubey et al, Phys. Rev. C 89, 014610 (2014)

    Article  ADS  Google Scholar 

  20. A Gómez Camacho, P R S Gomes and J Lubian, Phys. Rev. C 82, 067601 (2010)

  21. P R S Gomes et al, J. Phys. G: Nucl. Part. Phys. 31, S1669 (2005)

    Article  Google Scholar 

  22. F A Souza et al, Phys. Rev. C 75, 044601 (2007)

    Article  ADS  Google Scholar 

  23. E Vardaci et al, Eur. Phys. J. A 57, 95 (2021)

    Article  ADS  Google Scholar 

  24. A Pakou et al, Eur. Phys. J. A 58, 8 (2022)

    Article  ADS  Google Scholar 

  25. J O Fernandez Niello et al, Nucl. Phys. A 787, 484c (2007)

  26. Yongli Xu et al, Phys. Rev. C 97, 014615 (2018)

    Article  Google Scholar 

  27. Y P Xu and D Y Pang, Phys. Rev. C 87, 044605 (2013)

    Article  ADS  Google Scholar 

  28. Wen-Di Chen et al, Chin. Phys. C 44, 054109 (2020)

    Article  ADS  Google Scholar 

  29. E A Benjamim et al, Phys. Lett. B 647, 30 (2007)

    Article  ADS  Google Scholar 

  30. Sh Hamada and Awad A Ibraheem, Int. J. Mod. Phys. E 28, 1950108 (2019)

  31. Sh Hamada et al, Revista Mexicana de Fisica 66(3), 322 (2020)

    Article  Google Scholar 

  32. Sh Hamada and Awad A Ibraheem, Revista Mexicana de Fisica 67(2), 276 (2021)

  33. Sh Hamada, Norah A M Alsaif and Awad A Ibraheem, Phys. Scr. 96, 055306 (2021)

    Article  ADS  Google Scholar 

  34. Awad A Ibraheem et al, Braz. J. Phys. 51, 753 (2021)

  35. Awad A Ibraheem et al, Phys. Scr. 96, 115307 (2021)

  36. Sh Hamada and Awad A Ibraheem, Braz. J. Phys. 52, 29 (2022)

  37. Sh Hamada and Awad A Ibraheem, Revista Mexicana de Fisica 68, 041202 (2022)

  38. Sh Hamada, N Burtebayev and Awad A Ibraheem, Revista Mexicana de Fisica 68, 031201 (2022)

    Google Scholar 

  39. M F Vineyard, J Cook, K W Kemper and M N Stephensens, Phys. Rev. C 30, 3 (1984)

    Article  Google Scholar 

  40. H De Vries, C W De Jager and C De Vries, At. Data Nucl. Data Tables 36, 495 (1987)

    Article  ADS  Google Scholar 

  41. I I Gontchar and M V Chushnyakova, Comput. Phys. Commun. 181, 168 (2010)

    Article  ADS  Google Scholar 

  42. D T Khoa et al, Phys. Rev. C 56, 954 (1997)

    Article  ADS  Google Scholar 

  43. D T Khoa and W von Oertzen, Phys. Lett. B 304, 8 (1993)

    Article  ADS  Google Scholar 

  44. D T Khoa and W von Oertzen, Phys. Lett. B 342, 6 (1995)

    Article  ADS  Google Scholar 

  45. L J Allen, J P McTavish, M W Kermode and A McKerrell, J. Phys. G 7, 1367 (1981)

    Article  ADS  Google Scholar 

  46. G R Satchler and W G Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  47. L C Chamon et al, Phys. Rev. Lett. 79, 5218 (1997)

    Article  ADS  Google Scholar 

  48. L C Chamon, D Pereira and M S Hussein, Phys. Rev. C 58, 576 (1998)

    Article  ADS  Google Scholar 

  49. L C Chamon, Nucl. Phys. A 787, 198c (2007)

    Article  ADS  Google Scholar 

  50. L C Chamon, B V Carlson and L R Gasques, Comput. Phys. Commun. 267, 108061 (2021)

    Article  Google Scholar 

  51. B V Carlson and D Hirata, Phys. Rev. C 62, 054310 (2000)

    Article  ADS  Google Scholar 

  52. P Schwandt, R E Brown, F D Correll, R A Hardekopf and G G Ohlsen, Phys. Rev. C 26, 369 (1982)

    Article  ADS  Google Scholar 

  53. M Yasue et al, Nucl. Phys. A 391, 377 (1982)

    Article  ADS  Google Scholar 

  54. J Cook, Nucl. Phys. A 388, 153 (1982)

    Article  ADS  Google Scholar 

  55. M Nassurlla et al, Eur. Phys. J. A 57, 231(2021)

  56. M Nassurlla et al, Chin. Phys. C 44, 104103 (2020)

    Article  ADS  Google Scholar 

  57. N Burtebayev et al, Acta Phys. Pol. B 50, 1 (2019)

    Google Scholar 

  58. Sh Hamada and A A Ibraheem, Indian J. Phys. 94, 87 (2020)

    Article  ADS  Google Scholar 

  59. V K Lukyanov et al, Eur. Phys. J. A 53, 31 (2017)

    Article  ADS  Google Scholar 

  60. Sh Hamada and Awad A Ibraheem, Int. J. Mod. Phys. E 31, 2250019 (2022)

  61. I J Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Google Scholar 

  62. H Feshbach, Ann. Phys. (N.Y.) 19, 287 (1967)

  63. G R Satchler, Direct nuclear reactions (Clarendon Press, Oxford, 1983)

    Google Scholar 

  64. O R Kakuee et al, Nucl. Phys. A 728, 339 (2003)

    Article  ADS  Google Scholar 

  65. R S Mackintosh and N Keeley, Phys. Rev. C 70, 024604 (2004) and references therein

  66. M E Brandan and G R Satchler, Phys. Rep. 285, 143 (1997)

    Article  ADS  Google Scholar 

  67. Sh Hamada and A A Ibraheem, J. Taibah Univ. Sci. 16, 163 (2022)

    Article  Google Scholar 

  68. Sh Hamada and Awad A Ibraheem, Phys. Scr. 97, 125303 (2022)

  69. J M Figueira et al, AIP Conf. Proc. 884, 185 (2007)

    Article  ADS  Google Scholar 

  70. L F Canto, P R S Gomes, R Donangelo and M S Hussein, Phys. Rep. 424, 1 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, through the Research Funding Program (FRP-43-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sh Hamada or Awad A Ibraheem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamada, S., Alsaif, N.A.M., Farid, M.EA. et al. Elastic scattering analysis using different phenomenological and microscopic potentials for \({}^{7}\)Li \(+ {}^{27}\)Al system. Pramana - J Phys 97, 39 (2023). https://doi.org/10.1007/s12043-023-02515-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02515-2

Keywords

PACS Nos

Navigation