Skip to main content
Log in

On the Possibility of Controlling the Second Harmonic Radiation of the Free Electron Laser Using the Second Harmonic of the Undulator Field

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The second harmonic radiation of a single-pass free electron laser (FEL) and its dependence on the second harmonic of the undulator field are investigated. In analysis of properties of materials, the nonlinear generation of the second harmonic as a response to radiation is an important effect. In this context, the second harmonic generation of the radiation source (FEL) is undesirable since it masks the signal being analyzed. Conversely, in other cases, the second harmonic radiation of the FEL can be useful as radiation with a higher frequency. We investigate the possibility of suppression (or, conversely, enhancement) of the FEL second harmonic power depending on the phase and strength of the second harmonic of the FEL undulator field. The proposed approach is independent in principle of the radiation frequency. We consider examples of LCLS and PAL-XFEL in the X-ray range and SPARC and LEUTL in the visible range. The more effective influence of the undulator field harmonic in operation with narrow electron beams is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. L. Wu, S. Patankar, T. Morimoto, et al., Nat. Phys. 13, 350 (2016).

    Article  Google Scholar 

  2. G. Boyd, T. Bridges, and E. Burkhardt, IEEE J. Quantum Electron. 4, 515 (1968).

    Article  ADS  Google Scholar 

  3. G. C. Bhar, S. Das, and K. L. Vodopyanov, Appl. Phys. B 61, 187 (1995).

    Article  ADS  Google Scholar 

  4. M. Nuriya, S.Fukushima, et al., Nat. Commun. 7,11557 (2016).

    Article  ADS  Google Scholar 

  5. T. Sumi, M. Horio, T. Senoo, et al., E-J. Surf. Sci. Nanotech. 20, 31 (2021). https://doi.org/10.1380/ejssnt.2022-002

    Article  Google Scholar 

  6. K.-J. Kim, Z. Huang, and R. Lindberg, Synchrotron Radiation and Free Electron Lasers: Principles of Coherent X-Ray Radiation (Cambridge Univ. Press, Cambridge, UK, 2017).

    Book  Google Scholar 

  7. L.-H. Yu, Science (Washington, DC, U. S.) 289, 932 (2000).

    Article  ADS  Google Scholar 

  8. T. Shaftan and Li-H. Yu, Phys. Rev. E 71, 046501 (2005).

  9. K. C. Prince, E. Allaria, C. Callegari, et al., Nat. Photon. 10, 176 (2016).

    Article  ADS  Google Scholar 

  10. E. Allaria, L. Badano, S. Bassanese, et al., J. Synchrotr. Rad. 22, 485 (2015).

    Article  Google Scholar 

  11. B. Faatz, M. Braune, O. Hensler, et al., Appl. Sci. 7, 1114 (2017).

    Article  Google Scholar 

  12. K. Zhukovsky, Opt. Commun. 418, 57 (2018).

    Article  ADS  Google Scholar 

  13. K. Zhukovsky, J. Appl. Phys. 122, 233103 (2017).

  14. K. Zhukovsky, Eur. Phys. Lett. 119, 34002 (2017).

    Article  ADS  Google Scholar 

  15. T. Helk, E. Berger, S. Jamnuch, et al., Sci. Adv. 7, eabe2265 (2021).

  16. S. Shwartz, M. Fuchs, J. B. Hastings, et al., Phys. Rev. Lett. 112, 163901 (2014).

  17. S. Yamamoto, T. Omi, H. Akai, et al., Phys. Rev. Lett. 120, 223902 (2018).

  18. E. Berger, S. Jamnuch, C. Uzundal, et al., arXiv: 2010.03134 (2020).

  19. R. K. Lam, S. L. Raj, T. A. Pascal, et al., Phys. Rev. Lett. 120, 023901 (2018).

  20. C. P. Schwartz, S. L. Raj, S. Jamnuch, et al., arXiv: 2005.01905 (2020).

  21. P. J. Campagnola and L. M. Loew, Nat. Biotechnol. 21, 1356 (2003).

    Article  Google Scholar 

  22. S. G. Biedron et al., Nucl. Instrum. Methods Phys. Res., Sect. A 483, 94 (2002).

    Google Scholar 

  23. S. V. Milton, E. Gluskin, N. D. Arnold, et al., Science (Washington, DC, U. S.) 292, 2037 (2000).

    Article  Google Scholar 

  24. P. Emma, R. Akre, J. Arthur, et al., Nat. Photon. 4, 641 (2010).

    Article  ADS  Google Scholar 

  25. P. Emma, in Proceedings of Particle Accelerator Conference PAC09 (Vancouver, BC, Canada, 2009).

  26. D. Ratner, A. Brachmann, F. J. Decker, et al., Phys. Rev. ST-AB 14, 060701 (2011).

  27. Z. Huang and S. Reiche, in Proceedings of the International Free-Electron Laser Conference FEL 2004, Ed. by R. Bakker et al. (Italy, Trieste, 2004), p. 201.

  28. K. V. Zhukovsky and A. M. Kalitenko, Russ. Phys. J. 62, 354 (2019).

    Article  Google Scholar 

  29. K. Zhukovsky and I. Fedorov, Symmetry 13, 135 (2021).

    Article  ADS  Google Scholar 

  30. K. Zhukovsky, Results Phys. 13, 102248 (2019).

  31. K. V. Zhukovsky, J. Synchrotr. Rad. 26, 1481 (2019).

    Google Scholar 

  32. K. Zhukovsky, Rad. Phys. Chem. 189, 109698 (2021).

  33. K. Zhukovsky, Ann. Phys. 533, 2100091 (2021).

  34. K. V. Zhukovskii, Tech. Phys. 66, 481 (2021).

    Article  Google Scholar 

  35. K. V. Zhukovsky, Radiophys. Quantum Electron. 65, 88 (2022).

    Article  ADS  Google Scholar 

  36. K. V. Zhukovsky, Russ. Phys. J. 65, 1451 (2023).

    Article  Google Scholar 

  37. K. Zhukovsky and I. Fedorov, Mosc. Univ. Phys. Bull. 77, 11 (2022).

    Article  ADS  Google Scholar 

  38. K. Zhukovsky, Phys. Usp. 64, 304 (2021).

    Article  ADS  Google Scholar 

  39. K. Zhukovsky, Opt. Laser Technol. 143, 107296 (2021).

  40. K. Zhukovsky, I. Fedorov, and N. Gubina, Opt. Laser Technol. 159, 108972 (2023).

  41. K. Zhukovsky, Eur. Phys. Lett. 141, 45002 (2023).

    Article  ADS  Google Scholar 

  42. D. K. V. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, 1999), Chap. 5.

    Book  Google Scholar 

  43. H. Kitamura, Jpn. J. Appl. Phys. 19, L185 (1980).

    Article  ADS  Google Scholar 

  44. H. P. Freund and P. J. M. van der Slot, J. Phys. Comm. 8, 085011 (2021).

  45. V. G. Bagrov, V. F. Zalmezh, M. M. Nikitin, and V. Y. Epp, Nucl. Instrum. Methods Phys. Res., Sect. A 261, 54 (1987).

    Google Scholar 

  46. I. A. Fedorov and K. V. Zhukovsky, J. Exp. Theor. Phys. 135, 158 (2022).

    Article  ADS  Google Scholar 

  47. K. Zhukovsky and I. Fedorov, Symmetry 14, 1353 (2022).

    Article  ADS  Google Scholar 

  48. B. W. J. McNeil and N. R. Thompson, Nat. Photon. 4, 814 (2010).

    Article  ADS  Google Scholar 

  49. C. Pellegrini et al., Rev. Mod. Phys. 88, 015006 (2016).

  50. G. Margaritondo, Riv. Nuovo Cim. 40, 411 (2017).

    ADS  Google Scholar 

  51. Z. Huang and K. J. Kim, Phys. Rev. ST-AB 10, 034801 (2007).

  52. Z. Huang and K.-J. Kim, Phys. Rev. E 62, 7295 (2000).

    Article  ADS  Google Scholar 

  53. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers (Springer, Berlin, 2000).

    Book  Google Scholar 

  54. R. Bonifacio et al., Opt. Commun. 50, 373 (1984).

    Article  ADS  Google Scholar 

  55. L. Giannessi, in Synchrotron Light Sources and Free-Electron Lasers, Ed. by E. J. Jaeschke (Springer Int., Switzerland, 2016).

    Google Scholar 

  56. G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys. 95, 3206 (2004).

    Article  ADS  Google Scholar 

  57. G. Dattoli, P. L. Ottaviani, and S. Pagnutti, J. Appl. Phys. 97, 113102 (2005).

  58. M. Xie, Nucl. Instrum. Methods Phys. Res., Sect. A 445, 59 (2000).

    Google Scholar 

  59. K. V. Zhukovsky, Mosc. Univ. Phys. Bull. 74, 480 (2019).

    Article  ADS  Google Scholar 

  60. K. Zhukovsky and A. Kalitenko, J. Synchrotr. Rad. 26, 159 (2019).

    Google Scholar 

  61. L. Gianessi, in Proceedings of the 28th International Free Electron Laser Conference, Berlin, Germany (2006), MOPPH026.

  62. H. P. Freund and P. J. M. van der Slot, J. Phys. Commun. 5, 085011 (2021).

  63. G. Geloni et al., Opt. Commun. 271, 207 (2007).

    Article  ADS  Google Scholar 

  64. E. Saldin, E. Schneidmiller, and M. Yurkov, Nucl. Instrum. Methods Phys. Res., Sect. A 539, 499 (2005).

    Google Scholar 

  65. Z. Huang and K.-J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 475, 112 (2001).

    Google Scholar 

  66. H.-S. Kang et al., Nat. Photon. 11, 708 (2017).

    Article  ADS  Google Scholar 

  67. H. Yang and H.-S. Kang, Nucl. Instrum. Methods Phys. Res., Sect. A 911, 51 (2018).

    Google Scholar 

  68. J. Hong, J.-H. Han, et al., High Power Laser Sci. Eng. 3, 9 (2015).

    Article  Google Scholar 

  69. I. S. Ko, H.-S. Kang, H. Heo, et al., Appl. Sci. 7, 479 (2017).

    Article  ADS  Google Scholar 

  70. A. M. Kalitenko, J. Synchrotr. Rad. 28, 681 (2021).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation (grant no. 075-15-2021-1353) and the Hungarian Office for Research, Development and Innovation (NKFIH) under project number 2022-2.1.1-NL-2022-00002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. On the Possibility of Controlling the Second Harmonic Radiation of the Free Electron Laser Using the Second Harmonic of the Undulator Field. J. Exp. Theor. Phys. 137, 271–282 (2023). https://doi.org/10.1134/S1063776123090078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123090078

Navigation