Skip to main content
Log in

Structure of Ion–Molecular H+(H2O)n (n = 2–6) Complexes and the Thermodynamic Characteristics of Proton Hydration in Gas Atmosphere

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The isomers of ion–molecular H+(H2O)n complexes including up to six water molecules have been studied using quantum chemistry methods. The atomic positions in the isomers corresponding to the global and deepest local minima of potential energy are calculated using the basin-hopping algorithm. The activation energies of some configuration transformations are estimated. The thermodynamic characteristics of the clustering and decomposition of complexes are determined in a harmonic approximation, and they are in good agreement with experimental data. The possibility of simplifying the theoretical investigation of reactions by averaging the thermodynamic characteristics over various channels for energetically close isomers is shown. A weak dependence of the entropy of a reaction on the complex size has been found. A simplified model is proposed to explain the calculation results, and its use for estimating the entropies of complex clustering and decomposition reactions gives good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. Structural data are available as XYZ files in [79].

REFERENCES

  1. Q. Li, J. Jiang, and J. Hao, KONA Powder Particle J. 32, 57 (2015).

    Article  Google Scholar 

  2. B. M. Smirnov, Physics of the Global Atmosphere. Greenhouse Effect, Atmospheric Electricity, Climate Evolution (Intellekt, Dolgoprudnyi, 2017) [in Russian].

  3. S. Leygraf, I. O. Wallinder, J. Tidblad, and T. Graedel, Atmospheric Corrosion (Wiley, New York, 2016).

    Book  Google Scholar 

  4. L. W. Sieck, J. T. Heron, and D. S. Green, Plasma Chem. Plasma Proces. 20, 235 (2000).

    Article  Google Scholar 

  5. A. V. Filippov, I. N. Derbenev, N. A. Dyatko, S. A. Kurkin, G. B. Lopantseva, A. F. Pal’, and A. N. Starostin, J. Exp. Theor. Phys. 125, 246 (2017).

    Article  ADS  Google Scholar 

  6. P. Kebarle, S. K. Searles, A. Zolla, J. Scarborough, and M. Arshadi, J. Am. Chem. Soc. 89, 6393 (1967).

    Article  Google Scholar 

  7. F. H. Field and D. P. Beggs, J. Am. Chem. Soc. 93, 1576 (1971).

    Article  Google Scholar 

  8. A. J. Cunningham, J. D. Payzant, and P. Kebarle, J. Am. Chem. Soc. 94, 7627 (1972).

    Article  Google Scholar 

  9. Y. K. Lau, S. Ikuta, and P. Kebarle, J. Am. Chem. Soc. 104, 1462 (1982).

    Article  Google Scholar 

  10. M. Meot-Ner and C. V. Speller, J. Phys. Chem. 90, 6616 (1986).

    Article  Google Scholar 

  11. K. D. Froyd and E. R. Lovejoy, J. Phys. Chem. A 107, 9800 (2003).

    Article  Google Scholar 

  12. Y. Nakai, H. Hidaka, N. Watanabe, and T. M. Kojima, J. Chem. Phys. 144, 224306 (2016).

  13. K. A. Servage, J. A. Silveira, K. L. Fort, and D. H. Russell, Phys. Chem. Lett. 5, 1825 (2014).

    Article  Google Scholar 

  14. J. W. Shin, N. I. Hammer, E. G. Diken, M. A. Johnson, R. S. Walters, T. D. Jaeger, M. A. Duncan, R. A. Christie, and K. D. Jordan, Science (Washington, DC, U. S.) 304, 1137 (2004).

    Article  ADS  Google Scholar 

  15. K. Mizuse, N. Mikami, and A. Fujii, Angew. Chem. Int. Ed. 49, 10119 (2010).

    Article  Google Scholar 

  16. T. F. Magnera, D. E. David, and J. Michl, Chem. Phys. Lett. 182, 363 (1991).

    Article  ADS  Google Scholar 

  17. Z. Shi, J. V. Ford, S. Wei, and A. W. Castleman, J. Chem. Phys. 99, 8009 (1993).

    Article  ADS  Google Scholar 

  18. C. E. Klots, Z. Phys. D 21, 335 (1991).

    Article  ADS  Google Scholar 

  19. H. A. Schwarz, J. Chem. Phys. 67, 5525 (1977).

    Article  ADS  Google Scholar 

  20. M. H. Begemann, C. S. Gudeman, J. Pfaff, and R. J. Saykally, Phys. Rev. Lett. 51, 554 (1983).

    Article  ADS  Google Scholar 

  21. M. H. Begemann and R. J. Saykally, J. Chem. Phys. 82, 3570 (1985).

    Article  ADS  Google Scholar 

  22. M. Gruebele, M. Polak, and R. J. Saykally, J. Chem. Phys. 87, 3347 (1987).

    Article  ADS  Google Scholar 

  23. D.-J. Liu, N. N. Haese, and T. Oka, J. Chem. Phys. 82, 5368 (1985).

    Article  ADS  Google Scholar 

  24. D.-J. Liu and T. Oka, J. Chem. Phys. 84, 1312 (1986).

    Article  ADS  Google Scholar 

  25. L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989).

    Article  ADS  Google Scholar 

  26. L. I. Yeh, Y. T. Lee, and J. T. Hougen, J. Mol. Spectrosc. 164, 473 (1994).

    Article  ADS  Google Scholar 

  27. J. Tang and T. Oka, J. Mol. Spectrosc. 196, 120 (1999).

    Article  ADS  Google Scholar 

  28. J.-C. Jiang, Y.-S. Wang, H.-C. Chang, S. H. Lin, Y. T. Lee, G. Niedner-Schatteburg, and H.-Ch. Chang, J. Am. Chem. Soc. 122, 1398 (2000).

    Article  Google Scholar 

  29. J. M. Headrick, E. G. Diken, R. S. Walters, N. I. Hammer, R. A. Christie, J. Cui, E. M. Myshakin, M. A. Duncan, M. A. Johnson, and K. D. Jordan, Science (Washington, DC, U. S.) 308, 1765 (2000).

    Article  Google Scholar 

  30. G. E. Douberly, R. S. Walters, J. Cui, K. D. Jordan, and M. A. Duncan, J. Phys. Chem. A 114, 4570 (2010).

    Article  Google Scholar 

  31. F. Agostini, R. Vuilleumier, and G. Ciccotti, J. Chem. Phys. 134, 084303 (2011).

  32. K. Mizuse and A. Fujii, Phys. Chem. Chem. Phys. 13, 7129 (2011).

    Article  Google Scholar 

  33. G. M. Chaban, J. O. Jung, and R. B. Gerber, J. Phys. Chem. A 104, 2772 (2000).

    Article  Google Scholar 

  34. M. Park, I. Shin, N. J. Singh, and K. S. Kim, J. Phys. Chem. A 111, 10692 (2007).

    Article  Google Scholar 

  35. M. Baer, D. Marx, and G. Mathias, Chem. Phys. Chem. 12, 1906 (2011).

    Article  Google Scholar 

  36. Q. Yu and J. M. Bowman, J. Phys. Chem. A 123, 1399 (2019).

    Article  Google Scholar 

  37. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley, London, 1972).

    Google Scholar 

  38. V. M. Zamalin, G. E. Norman, and V. S. Filinov, The Monte-Carlo Method in Statistical Thermodynamics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  39. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 of Computational Science Series (Academic, New York, 2001).

  40. S. V. Shevkunov, Russ. J. Phys. Chem. A 78, 1590 (2004).

    Google Scholar 

  41. K. Suzuki, M. Shiga, and M. Tachikawa, J. Chem. Phys. 129, 144310 (2008).

  42. X. Z. Li, B. Walker, and A. Michaelides, Proc. Natl. Acad. Sci. U. S. A. 108, 6369 (2011).

    Article  ADS  Google Scholar 

  43. C. L. Vaillant, D. J. Wales, and S. C. Althorpe, Phys. Chem. Lett. 10, 7300 (2019).

    Article  Google Scholar 

  44. L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

  45. Yangsoo Kim and Yongho Kim, Chem. Phys. Lett. 362, 419 (2002).

    Article  ADS  Google Scholar 

  46. A. V. Lebedev, J. Anal. Chem. 74, 1325 (2019).

    Article  Google Scholar 

  47. S. M. Woodley, T. Lazauskas, M. Illingworth, A. C. Carter, and A. A. Sokol, Faraday Discuss. 2011, 593 (2018).

    Article  ADS  Google Scholar 

  48. M. P. Hodges and D. J. Wales, Chem. Phys. Lett. 324, 279 (2000).

    Article  ADS  Google Scholar 

  49. R. A. Christie and K. D. Jordan, J. Phys. Chem. A 105, 7551 (2001).

    Article  Google Scholar 

  50. J.-L. Kuo and M. L. Klein, J. Chem. Phys. 122, 024516 (2005).

  51. Y. Luo, S. Maeda, and K. Ohno, J. Comput. Chem. 30, 952 (2009).

    Article  Google Scholar 

  52. O. C. Nguyen, Y.-S. Ong, and J.-L. Kuo, J. Chem. Theory Comput. 5, 2629 (2009).

    Article  Google Scholar 

  53. R. E. Kozack and P. C. Jordan, J. Chem. Phys. 96, 3131 (1992).

    Article  ADS  Google Scholar 

  54. M. P. Hodges and A. J. Stone, J. Chem. Phys. 110, 6766 (1999).

    Article  ADS  Google Scholar 

  55. https://www-wales.ch.cam.ac.ukCCD.html.

  56. N. N. Kalitkin, Numerical Methods (BKhV-Peterburg, St. Petersburg, 2011) [in Russian].

  57. T. D. Kühne, M. Iannuzzi, M. D. Ben, et al., J. Chem. Phys. 152, 194103 (2020).

  58. A. H. Larsen, J. J. Mortensen, J. Blomqvist, et al., J. Phys.: Condens. Matter 29, 273002 (2017).

  59. S. Grimme, C. Bannwarth, and P. Shushkov, J. Chem. Theory Comput. 13, 1989 (2017).

    Article  Google Scholar 

  60. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  61. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  62. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Article  Google Scholar 

  63. Chr. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1937).

  64. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).

  65. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  Google Scholar 

  66. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

  67. Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).

    Article  ADS  Google Scholar 

  68. E. C. Lee, H. M. Lee, P. Tarakeshwar, and K. S. Kim, J. Chem. Phys. 119, 7725 (2003).

    Article  ADS  Google Scholar 

  69. J. S. Rao, T. C. Dinadayalane, J. Leszczynski, and G. N. Sastry, J. Phys. Chem. A 112, 12944 (2008).

    Article  Google Scholar 

  70. V. S. Bryantsev, M. S. Diallo, A. C. T. van Duin, and W. A. Goddard, J. Chem. Theory Comput. 5, 1016 (2009).

    Article  Google Scholar 

  71. M. Del Ben, M. Schönherr, J. Hutter, and J. Vande-Vondele, J. Phys. Chem. Lett. 4, 3753 (2013).

    Article  Google Scholar 

  72. M. Del Ben, J. Hutter, and J. Vande Vondele, J. Chem. Phys. 143, 054506 (2015).

  73. M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359 (1993).

    Article  ADS  Google Scholar 

  74. M. Del Ben, J. Hutter, and J. Vande Vondele, J. Chem. Theory Comput. 9, 2654 (2013).

    Article  Google Scholar 

  75. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  ADS  Google Scholar 

  76. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  77. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

    Article  ADS  Google Scholar 

  78. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  Google Scholar 

  79. https://www.researchgate.net/publication/369203964_ structuresxyz.

  80. S. Maheshwary, N. Patel, N. Sathyamurthy, A. D. Kulkarni, and S. R. Gadre, J. Phys. Chem. A 105, 10525 (2001).

    Article  Google Scholar 

  81. F. Yang, X. Wang, M. Yang, A. Krishtal, C. van Alsenoy, P. Delarue, and P. Senet, Phys. Chem. Chem. Phys. 12, 9239 (2010).

    Article  Google Scholar 

  82. A. S. Bednyakov, N. F. Stepanov, and Yu. V. Novakovskaya, Russ. J. Phys. Chem. A 88, 287 (2014).

    Article  Google Scholar 

  83. S. S. Xantheas, J. Chem. Phys. 100, 7523 (1994).

    Article  ADS  Google Scholar 

  84. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980; Springer, Berlin, 1985).

  85. J. Rodriguez, E. J. Marceca, and D. A. Estrin, J. Chem. Phys. 110, 9039 (1999).

    Article  ADS  Google Scholar 

  86. W. A. Adeagbo and P. Entel, Phase Trans. 77, 63 (2004).

    Article  Google Scholar 

  87. C. Hock, M. Schmidt, R. Kuhnen, C. Bartels, L. Ma, H. Haberland, and B. V. Issendorff, Phys. Rev. Lett. 103, 073401 (2009).

  88. I. K. Kikoin, Tables of Physical Values. The Manual (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  89. D. Everett, Introduction to the Study of Chemical Thermodynamics (Longmans, London, 1959).

    Google Scholar 

Download references

Funding

This work was supported by the State Atomic Energy Corporation Rosatom, state contract no. H.4z.241.09.21.1069 of April 20, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Reshetnyak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetnyak, V.V., Reshetnyak, O.B. & Filippov, A.V. Structure of Ion–Molecular H+(H2O)n (n = 2–6) Complexes and the Thermodynamic Characteristics of Proton Hydration in Gas Atmosphere. J. Exp. Theor. Phys. 137, 1–16 (2023). https://doi.org/10.1134/S1063776123070117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123070117

Navigation