Skip to main content
Log in

Electrostatic Interaction of Bilayer Macroparticles

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of a dielectric film on the surface of conducting dust particles on their electrostatic interaction is investigated. Special attention is paid to the case when the radius of one of particles is much larger than the radius of the other particle and to a nonuniform distribution of the surface charge with variants of equilibrium free charge distribution on each of the macroparticles over the entire surface and over the left and/or right hemispheres. The technique for calculating of slowly converging series is worked out using the hypergeometric Gauss functions and by introducing new functions for which recurrent relations and numerical calculation technique were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Notes

  1. In deriving this expression, we have considered that n + 1 = (2)n/(1)n, 1 = (1)n/(1)n = (2)n/(2)n, and (n + 2)–1 = \(\frac{1}{2}\)(2)n/(3)n.

REFERENCES

  1. V. N. Tsytovich, Phys. Usp. 40, 53 (1997).

    Article  ADS  Google Scholar 

  2. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).

    Article  ADS  Google Scholar 

  3. V. I. Molotkov, O. F. Petrov, M. Yu. Pustyl’nik, V. M. Torchinskii, V. E. Fortov, and A. G. Khrapak, High Temp. 42, 827 (2004).

    Article  Google Scholar 

  4. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).

    Book  MATH  Google Scholar 

  5. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).

    Article  ADS  Google Scholar 

  7. M. Bonitz, C. Henning, and D. Block, Rep. Prog. Phys. 73, 066501 (2010).

  8. Complex and Dusty Plasmas: From Laboratory to Space, Ed. by V. Fortov and G. Morfill (Fizmatlit, Moscow, 2012; Routledge, London, 2010).

  9. A. Ivlev, H. Lowen, G. Morfill, and C. P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids, Vol. 5 of Series in Soft Condensed Matter (World Scientific, Singapore, 2012).

  10. I. Mann, N. Meyer-Vernet, and A. Czechowski, Phys. Rep. 536, 1 (2014).

    Article  ADS  Google Scholar 

  11. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (CRC, Bristol, 2015).

    Book  Google Scholar 

  12. A. V. Ivlev, S. A. Khrapak, V. I. Molotkov, and A. G. Khrapak, Introduction to the Physics of Dusty and Complex Plasmas, The School-Book (Intellekt, Dolgoprudnyi, 2017) [in Russian].

  13. A. M. Lipaev, V. I. Molotkov, D. I. Zhukhovitskii, V. N. Naumkin, A. D. Usachev, A. V. Zobnin, O. F. Petrov, and V. E. Fortov, High Temp. 58, 449 (2020).

    Article  Google Scholar 

  14. F. Greiner, A. Melzer, B. Tadsen, S. Groth, C. Killer, F. Kirchschlager, F. Wieben, I. Pilch, H. Kruger, D. Block, A. Piel, and S. Wolf, Eur. Phys. J. D 72, 81 (2018). https://doi.org/10.1140/epjd/e2017-80400-7

    Article  ADS  Google Scholar 

  15. H. Yockell-Lelièvre, E. F. Borra, A. M. Ritcey, and L. V. da Silva, Appl. Opt. 42, 1882 (2003).

    Article  ADS  Google Scholar 

  16. S. Crossley, J. Faria, M. Shen, and D. E. Resasco, Science (Washington, DC, U. S.) 327, 68 (2010).

    Article  ADS  Google Scholar 

  17. V. A. Turek, M. P. Cecchini, J. Paget, A. R. Kucernak, A. A. Kornyshev, and J. B. Edel, ACS Nano 6, 7789 (2012).

    Article  Google Scholar 

  18. J. Song, J. Zhou, and H. Duan, J. Am. Chem. Soc. 134, 13458 (2012).

    Article  Google Scholar 

  19. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Chem. Rev. 112, 2739 (2012).

    Article  Google Scholar 

  20. P.-P. Fang, S. Chen, H. Deng, M. D. Scanlon, F. Gumy, H. J. Lee, D. Momotenko, V. Amstutz, F. Cortés-Salazar, C. M. Pereira, Z. Yang, and H. H. Girault, ACS Nano 7, 9241 (2013).

    Article  Google Scholar 

  21. J. B. Edel, A. A. Kornyshev, and M. Urbakh, ACS Nano 7, 9526 (2013).

    Article  Google Scholar 

  22. M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, Nat. Mater. 12, 165 (2013).

    Article  ADS  Google Scholar 

  23. J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, ACS Nano 7, 5320 (2013).

    Article  Google Scholar 

  24. J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, Nanoscale 5, 5816 (2013).

    Article  ADS  Google Scholar 

  25. J. He, P. Zhang, T. Babu, Y. Liu, J. Gong, and Z. Nie, Chem. Commun. 49, 576 (2013).

    Article  Google Scholar 

  26. J. Paget, V. Walpole, M. B. Jorquera, J. B. Edel, M. Urbakh, A. A. Kornyshev, and A. Demetriadou, J. Phys. Chem. C 118, 23264 (2014).

    Article  Google Scholar 

  27. E. Smirnov, M. D. Scanlon, D. Momotenko, H. Vrubel, M. A. Méndez, P.-F. Brevet, and H. H. Girault, ACS Nano 8, 9471 (2014).

    Article  Google Scholar 

  28. A. Samanta, S. Takkar, R. Kulshreshtha, B. Nandan, and R. K. Srivastava, Biomed. Phys. Eng. Express 3, 035011 (2017).

  29. M. D. Scanlon, E. Smirnov, T. J. Stockmann, and P. Peljo, Chem. Rev. 118, 3722 (2018).

    Article  Google Scholar 

  30. F. Ciesa and A. Plech, J. Colloid Interface Sci. 346, 1 (2010).

    Article  ADS  Google Scholar 

  31. E. Smirnov, P. Peljo, M. D. Scanlon, F. Gumy, and H. H. Girault, Nanoscale 8, 7723 (2016).

    Article  ADS  Google Scholar 

  32. P. A. Kralchevsky, K. D. Danov, and P. V. Petkov, Phil. Trans. R. Soc. London, Ser. A 374, 20150130 (2016). https://doi.org/10.1098/rsta.2015.0130

  33. L. Isa, I. Buttinoni, M. A. Fernandez-Rodriguez, and S. A. Vasudevan, Europhys. Lett. 119, 26001 (2017).

    Article  ADS  Google Scholar 

  34. R. Bebon and A. Majee, J. Chem. Phys. 153, 044903 (2020). https://doi.org/10.1063/5.0013298

  35. B. J. Cox, N. Thamwattana, and J. M. Hill, J. Electrostat. 65, 680 (2007). https://doi.org/10.1016/j.elstat.2007.05.004

  36. Y. Nakajima and T. Sato, J. Electrostat. 45, 213 (1999).

  37. E. Bichoutskaia, A. L. Boatwright, A. Khachatourian, and A. J. Stace, J. Chem. Phys. 133, 024105 (2010). https://doi.org/10.1063/1.3457157

  38. A. V. Filippov, J. Exp. Theor. Phys. 134, 590 (2022). https://doi.org/10.1134/S1063776122030141

    Article  ADS  Google Scholar 

  39. V. R. Munirov and A. V. Filippov, J. Exp. Theor. Phys. 117, 809 (2013).

    Article  ADS  Google Scholar 

  40. A. Khachatourian, H.-K. Chan, A. J. Stace, and E. Bichoutskaia, J. Chem. Phys. 140, 074107 (2014). https://doi.org/10.1063/1.4862897

  41. J. D. Love, Q. J. Mech. Appl. Math. 28, 449 (1975).

    Article  Google Scholar 

  42. A. T. Pérez and R. Fernández-Mateo, J. Electrostat. 112, 103601 (2021). https://doi.org/10.1016/j.elstat.2021.103601

  43. A. V. Filippov, JETP Lett. 115, 174 (2022). https://doi.org/10.1134/S0021364022030067

    Article  ADS  Google Scholar 

  44. T. B. Jones and T. B. Jones, Electromechanics of Particles (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  45. A. Castellanos, Adv. Phys. 54, 263 (2005).

    Article  ADS  Google Scholar 

  46. X. Meng, J. Zhu, and J. Zhang, J. Phys. D 42, 065201 (2009).

  47. B. Gady, D. Schleef, R. Reifenberger, D. Rimai, and L. P. De Mejo, Phys. Rev. B 53, 8065 (1996).

    Article  ADS  Google Scholar 

  48. B. Gady, R. Reifenberger, D. S. Rimai, and L. P. De Mejo, Langmuir 13, 2533 (1997).

    Article  Google Scholar 

  49. Y. Liu, C. Song, G. Lv, N. Chen, H. Zhou, and X. Jing, Appl. Surf. Sci. 433, 450 (2018).

    Article  ADS  Google Scholar 

  50. M. C. Stevenson, S. P. Beaudoin, and D. S. Corti, J. Phys. Chem. C 124, 3014 (2020). https://doi.org/10.1021/acs.jpcc.9b09669

    Article  Google Scholar 

  51. M. C. Stevenson, S. P. Beaudoin, and D. S. Corti, J. Phys. Chem. C 125, 20003 (2021).

    Article  Google Scholar 

  52. H. Zhou, M. Götzinger, and W. Peukert, Powder Technol. 135–136, 82 (2003).

    Article  Google Scholar 

  53. Y. Gao, E. Tian, and J. Mo, ACS ES and T Eng. 1, 1449 (2021).

    Article  Google Scholar 

  54. C. Bechinger, R. di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016). https://doi.org/10.1103/RevModPhys.88.045006

  55. J. Elgeti, R. G. Winkler, and G. Gompper, Rep. Prog. Phys. 78, 056601 (2015). https://doi.org/10.1088/0034-4885/78/5/056601

  56. S. Ramaswamy, J. Stat. Mech.: Theory Exp. 2017, 054002 (2017). https://doi.org/10.1088/1742-5468/aa6bc5

  57. A. Walther and A. H. E. Müller, Chem. Rev. 113, 5194 (2013).

    Article  Google Scholar 

  58. E. A. Lisin, O. S. Vaulina, I. I. Lisina, and O. F. Petrov, Phys. Chem. Chem. Phys. 23, 16248 (2021).

    Article  Google Scholar 

  59. I. Adamovich, S. Agarwal, E. Ahedo, L. L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts, A. Bourdon, P. J. Bruggeman, C. Canal, E. H. Choi, S. Coulombe, Z. Donkó, D. B. Graves, S. Hamaguchi, et al., J. Phys. D: Appl. Phys. 55, 373001 (2022). https://doi.org/10.1088/1361-6463/ac5e1c

  60. V. V. Batygin and I. N. Toptygin, Collection of Problems in Electrodynamics (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  61. W. R. Smythe, Static and Dynamic Electricity (CRC, Boca Raton, 1989).

    MATH  Google Scholar 

  62. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Cambridge Univ. Press, Cambridge, 1931).

    MATH  Google Scholar 

  63. T. M. MacRobert, Spherical Harmonics (Metiuen, London, 1947).

    Google Scholar 

  64. Y. L. Luke, Mathematical Functions and their Approximations (Academic, New York, 1975).

    MATH  Google Scholar 

  65. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 3: More Special Functions (Gordon and Breach, London, 1986; Fizmatlit, Moscow, 2003).

  66. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Fizmatlit, Moscow, 2002; Gordon and Breach, New York, 1986).

Download references

ACKNOWLEDGMENTS

The author is grateful to D.I. Astakhov, P.V. Krainov, and V.V. Medvedev from the Institute of Spectroscopy, Russian Academy of Sciences for numerous fruitful discussions of the results of this study.

Funding

This work was supported by the Russian Science Foundation (project no. 22-22-01000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Appendices

PROCEDURE OF CALCULATION OF THE HYPERGEOMETRIC GAUSS FUNCTION

Hypergeometric Gauss function 2F1 is defined by relation [64, 65]

$$_{2}{{{\text{F}}}_{1}}(a,b;c;z) = \sum\limits_{n = 0}^\infty {\frac{{{{{(a)}}_{n}}{{{(b)}}_{n}}}}{{{{{(c)}}_{n}}}}\frac{{{{z}^{n}}}}{{n!}},} $$
(72)

where (a)n is the Pochhammer symbol,

$${{(a)}_{n}} = \frac{{\Gamma (a + n)}}{{\Gamma (a)}} = a(a + 1)...(a + n - 1),$$
(73)

Γ is the gamma function. It should be noted that n! = (1)n, and

$$C_{{n + k}}^{k} = \frac{{(n + k)!}}{{n!k!}} = \frac{{{{{(k + 1)}}_{n}}}}{{{{{(1)}}_{n}}}}.$$

For calculating the hypergeometric Gauss function, we used the recurrent relation [64, 65]:

$$\begin{gathered} _{2}{{{\text{F}}}_{1}}(a - 1,b;c,z) \\ \, + {{(2a - c - az + bz)}_{2}}{{{\text{F}}}_{1}}(a,b;c;z) \\ \, + a{{(z - 1)}_{2}}{{{\text{F}}}_{1}}(a + 1,b;c;z) = 0 \\ \end{gathered} $$
(74)

and the following expressions [64, 65]:

$$\begin{gathered} _{2}{{{\text{F}}}_{1}}(a,b;c;z) = {{\,}_{2}}{{{\text{F}}}_{1}}(b,a;c;z), \\ _{2}{{{\text{F}}}_{1}}(0,b;c;z) = {{\,}_{2}}{{{\text{F}}}_{1}}(b,a;c;0) = 1, \\ _{2}{{{\text{F}}}_{1}}(a,b;b;z) = {{(1 - z)}^{{ - a}}}, \\ \end{gathered} $$
(75)
$$\begin{gathered} _{2}{{{\text{F}}}_{1}}(1,1;c;z) = \frac{{(c - 1)z}}{{{{{(1 - z)}}^{2}}}} \\ \times \left[ {\sum\limits_{k = 2}^{c - 1} {\frac{1}{{c - k}}{{{\left( {\frac{{z - 1}}{z}} \right)}}^{k}} - {{{\left( {\frac{{z - 1}}{z}} \right)}}^{c}}\ln (1 - z)} } \right], \\ c = 2,3,4,..., \\ \end{gathered} $$
(76)
$$\begin{gathered} _{2}{{{\text{F}}}_{1}}(1,b;c;z) = \frac{{(c - 1)!}}{{(c - b - 1)!}}\frac{1}{z} \\ \times \,\,\left\{ {\sum\limits_{k = 1}^{c - b - 1} {\frac{{(c - b - k - 1)!}}{{(c - k - 1)!}}} {{{\left( {\frac{{z - 1}}{z}} \right)}}^{{k - 1}}}} \right. \\ \left. { - \,\,\frac{z}{{(b - 1)!}}{{{\left( {\frac{{z - 1}}{z}} \right)}}^{{c - b - 1}}}\left[ {\sum\limits_{k = 1}^{b - 1} {\frac{{{{z}^{{ - k}}}}}{{z - k}}} + {{z}^{{ - b}}}\ln (1 - z)} \right]} \right\}, \\ c > b, \\ \end{gathered} $$
(77)
$$\begin{gathered} _{2}{{{\text{F}}}_{1}}(1,b;c;z) = (c - 1){{(1 - z)}^{{c - b - 1}}} \\ \times \,\,\sum\limits_{k = 0}^{c - b - 1} {\frac{{{{{(c - b)}}_{k}}}}{{k!(c + k - 1)!}}} {{z}^{k}},\quad b \geqslant c. \\ \end{gathered} $$
(78)

PROCEDURE FOR CALCULATING FUNCTION \(T_{n}^{a}\)

For function \(T_{n}^{a}\) (34), we can easily find recurrent relations

$$\begin{gathered} T_{n}^{a}({{y}^{2}}) = \frac{{{{y}^{{ - n + 1}}}}}{{n - 1}}\frac{{\partial {{y}^{n}}T_{{n - 1}}^{a}({{y}^{2}})}}{{\partial y}} \\ = \frac{n}{{n - 1}}T_{{n - 1}}^{a}({{y}^{2}}) + \frac{y}{{n - 1}}y\frac{\partial }{{\partial y}}T_{{n - 1}}^{a}({{y}^{2}}), \\ \end{gathered} $$
(79)
$$T_{n}^{a} = \frac{2}{{n - 1}}T_{{n - 1}}^{{a - 1}} + \frac{{b - 2a}}{{n - 1}}T_{{n - 1}}^{a}.$$
(80)

Further, we introduce function

$${{R}_{m}} = {{\left( {\frac{1}{{1 - 4{{y}^{2}}}}} \right)}^{{m + 1/2}}}$$
(81)

and operator Ωn, which transforms \(T_{n}^{a}\) into \(T_{{n + 1}}^{a}\) (see expression (79)):

$$\begin{gathered} T_{{n + 1}}^{a}({{y}^{2}}) = {{\Omega }_{n}}\left[ {\frac{1}{n}T_{n}^{a}({{y}^{2}})} \right] \\ = \frac{{n + 1}}{n}T_{n}^{a}({{y}^{2}}) + \frac{y}{n}\frac{\partial }{{\partial y}}T_{n}^{a}({{y}^{2}}). \\ \end{gathered} $$
(82)

The action of this operator on Rm is defined by expression

$${{\Omega }_{n}}({{R}_{m}}) = \left( {1 - \frac{{2m}}{n}} \right){{R}_{m}} + \frac{{2m + 1}}{n}{{R}_{{m + 1}}}.$$
(83)

The procedure of calculating functions \(T_{{n + 1}}^{2}\), \(T_{{n + 1}}^{3}\) (n = 1, 2, …, nB + 1) required for determining Qn (35) is as follows.

1. We calculate functions Rm = (1 – 4y2)m – 1/2 for m = 1, 2, …, nB at y2 = –x2/4.

2. We calculate

$$T_{2}^{1}({{y}^{2}}) = \frac{2}{{{{{(1 - 4{{y}^{2}})}}^{{3/2}}}}} = 2{{R}_{1}}.$$

3. We calculate \(T_{n}^{1}\) for n = 3, 4, …, nB + 2 using operator (83).

4. We calculate

$$\begin{gathered} T_{2}^{2}({{y}^{2}}) = \sum\limits_{k = 0}^\infty {\frac{{(2k + 2)!}}{{k!(k + 2)!}}{{y}^{{2k}}}} \\ = \frac{4}{{{{{(1 - 4{{y}^{2}})}}^{{1/2}}}{{{[1 + {{{(1 - 4{{y}^{2}})}}^{{1/2}}}]}}^{2}}}}. \\ \end{gathered} $$

5. Using recurrent relation (79), we calculate \(T_{n}^{2}\) for n = 3, 4, …, nB + 2.

6. We calculate

$$T_{2}^{3}({{y}^{2}}) = \sum\limits_{k = 0}^\infty {\frac{{(2k + 3)!}}{{k!(k + 3)!}}} {{y}^{{2k}}} = \frac{8}{3}\frac{1}{{{{{[1 + {{{(1 - 4{{y}^{2}})}}^{{1/2}}}]}}^{3}}}}.$$

7. Using recurrent relation (79), we calculate \(T_{n}^{3}\) for n = 3, 4, …, nB + 2.

Ultimately, all functions \(T_{n}^{a}\) required for calculating coefficients bn (22) and force Fσ (56) have been calculated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.V. Electrostatic Interaction of Bilayer Macroparticles. J. Exp. Theor. Phys. 137, 30–46 (2023). https://doi.org/10.1134/S1063776123070105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123070105

Navigation