Skip to main content
Log in

Electronic Band Structure, Antiferromagnetism, and the Nature of Chemical Bonding in La2CuO4

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electronic band structure of orthorhombic compound La2CuO4, which is the parent for a number of high-temperature superconductor families, has been calculated in terms of the density functional theory using the WIEN2k program package. Calculations have been performed by means of two exchange-correlation functionals. The former is a sum of the Tran- and Blaha-modified Becke–Johnson exchange potential and correlations in a local approximation, whereas the latter is the Perdew–Burke–Ernzerhof functional. Calculations taking into account spin polarization have shown the presence of an antiferromagnetic ground state in orthorhombic La2CuO4. Using the former functional, the magnetic moment of copper atoms and a semiconductor gap have been found to be MCu = 0.725μB and Eg = 2 eV. The latter has yielded MCu = 0.278μB and Eg = 0. Calculations results for the optical properties of orthorhombic La2CuO4: the electron energy losses, the real part of optical conductivity, and reflection coefficient, are in good agreement with experimental data. The calculated spatial distribution of the charge density in orthorhombic compound La2CuO4 has been analyzed with the aim of finding critical saddle points with parameters making it possible to classify the types of chemical bonds in crystals. The set of critical point parameters for orthorhombic La2CuO4 has turned out to be similar to that previously found by us for tetragonal La2CuO4 and related high temperature superconductors. In particular, the positive sign of the charge density Laplacian at bond critical points indicates the absence of covalent bonding in La2CuO4 according to the chemical bond classification proposed by Bader in his “Quantum Theory of Atoms in Molecules and Crystals.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    Article  ADS  Google Scholar 

  2. X. Zhou, W.-S. Lee, M. Imada, et al., Nat. Rev. Phys. 3, 462 (2021).

    Article  Google Scholar 

  3. J. G. Bednorz, M. Takashige, and K. A. Müller, Europhys. Lett. 3, 379 (1987).

    Article  ADS  Google Scholar 

  4. J. G. Bednorz, M. Takashige, and K. A. Müller, Mater. Res. Bull. 22, 819 (1987).

    Article  Google Scholar 

  5. J. M. Tarascon, L. H. Greene, W. R. McKinnon, et al., Science (Washington, DC, U. S.) 235, 1373 (1987).

    Article  ADS  Google Scholar 

  6. R. J. Cava, R. B. van Dover, B. Battlog, et al., Phys. Rev. Lett. 58, 408 (1987).

    Article  ADS  Google Scholar 

  7. F. C. Chou and D. C. Johnston, Phys. Rev. B 54, 572 (1996).

    Article  ADS  Google Scholar 

  8. S. A. Kivelson, G. Aeppli, and V. J. Emery, Proc. Natl. Acad. Sci. U. S. A. 98, 11903 (2001).

    Article  ADS  Google Scholar 

  9. R. Hord, G. Cordier, K. Hofmann, et al., Z. Anorg. Allgem. Chem. 637, 1114 (2011).

    Article  Google Scholar 

  10. International Tables for Crystallography, Vol. A: Space-Group Symmetry, 5th ed., Ed. by Th. Hahn (Springer, Berlin, 2005).

    Google Scholar 

  11. L. F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).

    Article  ADS  Google Scholar 

  12. J. Yu, A. F. Freeman, and J.-H. Xu, Phys. Rev. Lett. 58, 1035 (1987).

    Article  ADS  Google Scholar 

  13. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

    Article  ADS  Google Scholar 

  14. D. Vaknin, S. K. Sinha, D. E. Moncton, et al., Phys. Rev. Lett. 58, 2802 (1987).

    Article  ADS  Google Scholar 

  15. K. Yamada, E. Kudo, Y. Endoh, et al., Solid State Commun. 64, 753 (1987).

    Article  ADS  Google Scholar 

  16. J. P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001).

    Article  ADS  Google Scholar 

  17. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  18. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  ADS  Google Scholar 

  19. V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).

    Article  ADS  Google Scholar 

  20. I. A. Makarov and S. G. Ovchinnikov, J. Exp. Theor. Phys. 121, 457 (2015).

    Article  ADS  Google Scholar 

  21. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  22. M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1994).

    Article  ADS  Google Scholar 

  23. J. P. Perdew, A. Ruzsinszky, J. Tao, et al., J. Chem. Phys. 123, 062201 (2005).

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  25. J. W. Furness, Y. Zhang, C. Lane, et al., Comm. Phys. 1, 11 (2018).

    Article  ADS  Google Scholar 

  26. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  27. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  28. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  29. J. K. Perry, J. Tahir-Kheli, and W. A. Goddart III, Phys. Rev. B 63, 144510 (2001).

  30. P. Rivero, I. de P. R. Moreira, and F. Illeas, Phys. Rev. B 81, 205123 (2010).

  31. C. Lane, J. W. Furness, I. G. Buda, et al., Phys. Rev. B 98, 125140 (2018).

  32. J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).

  33. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technol., Austria, 2021).

    Google Scholar 

  34. P. Blaha, K. Schwarz, F. Tran, et al., J. Chem. Phys. 152, 074101 (2020).

  35. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

  36. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  37. H. Dixit, R. Saniz, S. Cottenier, et al., J. Phys.: Condens. Matter 24, 205503 (2012).

  38. D. J. Singh, Phys. Rev. B 82, 205102 (2010).

  39. V. G. Orlov and G. S. Sergeev, Phys. B (Amsterdam, Neth.) 536, 839 (2018).

  40. V. G. Orlov and G. S. Sergeev, J. Magn. Magn. Mater. 475, 627 (2019).

    Article  ADS  Google Scholar 

  41. E. A. Kravchenko, V. G. Orlov, and G. S. Sergeev, J. Exp. Theor. Phys. 131, 761 (2020).

    Article  ADS  Google Scholar 

  42. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Vol. 22 of International Series of Monographs on Chemistry (Oxford Sci. Publ., Oxford, 1990).

  43. C. Gatti, Z. Kristallogr. 220, 399 (2005).

    Article  Google Scholar 

  44. The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design, Ed. by C. F. Matta and R. J. Boyd (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  45. J. M. Ginger, M. G. Roe, Y. Song, et al., Phys. Rev. B 37, 7506 (1988).

    Article  ADS  Google Scholar 

  46. S. Uchida, T. Ido, H. Takagi, et al., Phys. Rev. B 43, 7942 (1991).

    Article  ADS  Google Scholar 

  47. M. Terauchi and M. Tanaka, Micron 30, 371 (1999).

    Article  Google Scholar 

  48. M. Hidaka, N. Tokiwa, M. Oda, et al., Phase Trans. 76, 905 (2003).

    Article  Google Scholar 

  49. P. Steiner, J. Albers, V. Kinsinger, et al., Z. Phys. B 66, 275 (1987).

    Article  ADS  Google Scholar 

  50. T. Takahashi, F. Maeda, H. Katayama-Yoshida, et al., Phys. Rev. B 37, 9788 (1988).

    Article  ADS  Google Scholar 

  51. N. Nucker, J. Fink, B. Renker, et al., Z. Phys. B 67, 9 (1987).

    Article  ADS  Google Scholar 

  52. B. Reihl, T. Riesterer, J. G. Bednorz, et al., Phys. Rev. B 35, 8804 (1987).

    Article  ADS  Google Scholar 

  53. A. Fujimori, E. Takayama-Muromachi, Y. Uchida, et al., Phys. Rev. B 35, 8814 (1987).

    Article  ADS  Google Scholar 

  54. Z.-X. Shen, J. W. Allen, J. J. Yeh, et al., Phys. Rev. B 36, 8414 (1987).

    Article  ADS  Google Scholar 

  55. C. Ambrosch-Draxl and J. O. Sofo, Comput. Phys. Commun. 175, 1 (2006).

    Article  ADS  Google Scholar 

  56. R. Abt, C. Ambrosch-Draxl, and P. Knoll, Phys. B (Amsterdam, Neth.) 194–196, 1451 (1994).

  57. S. Tajima, H. Ishii, T. Nakahashi, et al., J. Opt. Soc. Am. B 6, 475 (1989).

    Article  ADS  Google Scholar 

  58. S. Uchida, T. Ido, H. Takagi, et al., Phys. Rev. B 43, 7942 (1991).

    Article  ADS  Google Scholar 

  59. A. Otero-de-la-Roza, E. R. Johnson, and V. Luana, Comput. Phys. Commun. 185, 1007 (2014).

    Article  ADS  Google Scholar 

  60. V. G. Orlov and G. S. Sergeev, AIP Adv. 12, 055110 (2022).

  61. V. G. Orlov and G. S. Sergeev, Fiz. Tverd. Tela 64, 1900 (2022).

    Google Scholar 

  62. D. D. Wagman, W. H. Evans, V. B. Parker, et al., J. Phys. Chem. Ref. Data 11 (Suppl. 2) (1982).

  63. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  64. M. J. Lawler, K. Fujita, J. Lee, et al., Nature (London, U.K.) 466, 347 (2010).

    Article  ADS  Google Scholar 

  65. R. Comin and A. Damascelli, Ann. Rev. Condens. Matter Phys. 7, 369 (2016).

    Article  ADS  Google Scholar 

  66. H. Miao, G. Fabbris, R. J. Koch, et al., npj Quantum Mater. 6, 31 (2021).

  67. R. Arpaia, S. Caprara, R. Fumagalli, et al., Science (Washington, DC, U. S.) 365, 906 (2019).

    Article  ADS  Google Scholar 

  68. R. Arpaia and G. Chiringhelli, J. Phys. Soc. Jpn. 90, 111005 (2021).

  69. H. C. Robarts, M. Garcia-Fernandez, J. Li, et al., Phys. Rev. B 103, 224427 (2021).

  70. V. G. Orlov, A. A. Bush, S. A. Ivanov, et al., J. Low Temp. Phys. 105, 1541 (1996).

    Article  ADS  Google Scholar 

  71. B. O. Wells, R. J. Birgenaeu, F. C. Chou, et al., Z. Phys. B 100, 535 (1996).

    Article  ADS  Google Scholar 

  72. http://ckp.nrcki.ru/.

Download references

ACKNOWLEDGMENTS

This study was carried out using equipment in the common use center “Complex for Simulating and Processing Data Obtained with the Use of National Research Center Kurchatov Institute Megascience Research Facilities” [72].

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Orlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.G., Sergeev, G.S. Electronic Band Structure, Antiferromagnetism, and the Nature of Chemical Bonding in La2CuO4. J. Exp. Theor. Phys. 137, 95–103 (2023). https://doi.org/10.1134/S1063776123070051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123070051

Navigation