Skip to main content
Log in

High Harmonic Generation with Many-Particle Coulomb Interaction in Graphene Quantum Dot

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The multiphoton excitation and high harmonic generation (HHG) processes are considered using the microscopic quantum theory of nonlinear interaction of strong coherent electromagnetic (EM) radiation with rectangular graphene quantum dot (GQD) with zigzag edges and more than 80 atoms. The dynamic Hartree–Fock approximation has been used to consider the quantum dot-laser field nonlinear interaction at the nonadiabatic multiphoton excitation regime. The many-body Coulomb interaction is described in the extended Hubbard approximation. By numerical results, we show the significance of the rectangular GQD lateral size, shape, and EM wavefield orientation in rectangular GQD of the zigzag edge in the HHG process allowing for increasing the cutoff photon energy and the quantum yield of higher harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington, DC, U. S.) 306 (5696), 666 (2004).

    Article  ADS  Google Scholar 

  2. A. K. Geim, Science (Washington, DC, U. S.) 324, 1530 (2009).

    Article  ADS  Google Scholar 

  3. A. H. C. Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  4. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  5. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).

    Article  Google Scholar 

  6. P. Agostini and L. F. di Mauro, Rep. Prog. Phys. 67, 813 (2004).

    Article  ADS  Google Scholar 

  7. M. C. Kohler, T. Pfeifer, K. Z. Hatsagortsyan, and C. H. Keitel, Adv. At. Mol. Opt. Phys. 61, 159 (2012).

    Article  ADS  Google Scholar 

  8. H. K. Avetissian, Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super-Strong Radiation Fields (Springer, New York, 2016).

    Book  MATH  Google Scholar 

  9. M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, et al., J. Phys. B 21, L31 (1988).

    Article  Google Scholar 

  10. S. Ghimire, A. D. di Chiara, E. Sistrunk, et al., Nat. Phys. 7, 138 (2011).

    Article  Google Scholar 

  11. O. Schubert, M. Hohenleutner, F. Langer, et al., Nat. Photon. 8, 119 (2014).

    Article  ADS  Google Scholar 

  12. G. Vampa, T. J. Hammond, N. Thire, et al., Nature (London, U.K.) 8, 462 (2015).

    Article  ADS  Google Scholar 

  13. G. Ndabashimiye, S. Ghimire, M. Wu, et al., Nature (London, U.K.) 534, 520523 (2016).

  14. Y. S. You, D. A. Reis, and S. Ghimire, Nat. Phys. 13, 345349 (2017).

  15. H. Liu, C. Guo, G. Vampa, et al., Nat. Phys. 14, 1006 (2018).

    Article  Google Scholar 

  16. S. A. Mikhailov and K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008).

  17. H. K. Avetissian, A. K. Avetissian, G. F. Mkrtchian, and Kh. V. Sedrakian, Phys. Rev. B 85, 115443 (2012).

  18. H. K. Avetissian, G. F. Mkrtchian, K. V. Sedrakian, et al., J. Nanophoton. 6, 061702 (2012).

  19. H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, et al., Phys. Rev. B 88, 165411 (2013).

  20. P. Bowlan, E. Martinez-Moreno, K. Reimann, et al., Phys. Rev. B 89, 041408(R) (2014).

  21. I. Al-Naib, J. E. Sipe, and M. M. Dignam, New J. Phys. 17, 113018 (2015).

  22. L. A. Chizhova, F. Libisch, and J. Burgdorfer, Phys. Rev. B 94, 075412 (2016).

  23. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 94, 045419 (2016).

  24. H. K. Avetissian, A. G. Ghazaryan, G. F. Mkrtchian, and Kh. V. Sedrakian, J. Nanophoton. 11, 016004 (2017).

  25. H. K. Avetissian, A. K. Avetissian, A. G. Ghazaryan, et al., J. Nanophoton. 14, 026004 (2020).

  26. L. A. Chizhova, F. Libisch, and J. Burgdorfer, Phys. Rev. B 95, 085436 (2017).

  27. D. Dimitrovski, L. B. Madsen, and T. G. Pedersen, Phys. Rev. B 95, 035405 (2017).

  28. N. Yoshikawa, T. Tamaya, and K. Tanaka, Science (Washington, DC, U. S.) 356, 736 (2017).

    Article  ADS  Google Scholar 

  29. A. Golub, R, Egger, C. Müller, and S. Villalba-Chavez, Phys. Rev. Lett. 124, 110403 (2020).

  30. A. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 97, 115454 (2018).

  31. A. K. Avetissian, A. G. Ghazaryan, and Kh. V. Sedrakian, J. Nanophoton. 13, 036010 (2019).

  32. A. G. Ghazaryan and Kh. V. Sedrakian, J. Nanophoton. 13, 046004 (2019).

  33. A. G. Ghazaryan and Kh. V. Sedrakian, J. Nanophoton. 13, 046008 (2019).

  34. G. Oztarhan, E. B. Kul, E. Okcu, and A. D. Guclu, arXiv: 2210.14696 (2022).

  35. A. K. Avetissian, A. G. Ghazaryan, Kh. V. Sedrakian, and B. R. Avchyan, J. Nanophoton. 12, 016006 (2018).

  36. A. D. Guclu and Nejat Bulut, Phys. Rev. B 91, 125403 (2015).

  37. H. K. Avetissian, A. K. Avetissian, B. R. Avchyan, and G. F. Mkrtchian, Phys. Rev. B 100, 035434 (2019).

  38. Yu. Bludov, N. Peres, and M. Vasilevskiy, Phys. Rev. B 101, 075415 (2020).

  39. H. Liu, Y. Li, Y. S. You, et al., Nat. Phys. 13, 262 (2017).

    Article  Google Scholar 

  40. G. F. Mkrtchian, A. Knorr, and M. Selig, Phys. Rev. B 100, 125401 (2020).

  41. H. K. Avetissian, G. F. Mkrtchian, and K. Z. Hatsagortsyan, Phys. Rev. Res. 2, 023072 (2020).

  42. G. le Breton, A. Rubio, and N. Tancogne-Dejean, Phys. Rev. B 98, 165308 (2018).

  43. H. K. Avetissian, A. K. Avetissian, B. R. Avchyan, and G. F. Mkrtchian, J. Phys.: Condens. Matter 30, 185302 (2018).

  44. Y. Tokura, K. Yasuda, and A. Tsukazaki, Nat. Rev. Phys. 1, 126 (2019).

    Article  Google Scholar 

  45. T. G. Pedersen, Phys. Rev. B 95, 235419 (2017).

  46. T. Zhang, P. Cheng, X. Chen, et al., Phys. Rev. Lett. 103, 266803 (2009).

  47. S. Almalki, A. M. Parks, G. Bart, et al., Phys. Rev. B 98, 144307 (2018).

  48. B. Cheng, N. Kanda, T. N. Ikeda, et al., Phys. Rev. Lett 124, 117402 (2020).

  49. T. Cao, Z. Li, and S. G. Louie, Phys. Rev. Lett. 114, 236602 (2015).

  50. L. Seixas, A. S. Rodin, A. Carvalho, and A. H. C. Neto, Phys. Rev. Lett. 116, 206803 (2016).

  51. W. S. Whitney, V. W. Brar, Y. Ou, et al., Nano Lett. 17, 255 (2017).

    Article  ADS  Google Scholar 

  52. X. Zhang, T. Zhu, H. Du, et al., arXiv: 2112.08790 (2021).

  53. J. Faist, F. Capasso, D. L. Sivco, et al., Science (Washington, DC, U. S.) 264 (5158), 553 (1994).

    Article  ADS  Google Scholar 

  54. G. P. Zhang and Y. H. Bai, Phys. Rev. B 101, 081412(R) (2020).

  55. H. K. Avetissian, A. G. Ghazaryan, and G. F. Mkrtchian, Phys. Rev. B 104, 125436 (2021).

  56. B. R. Avchyan, A. G. Ghazaryan, K. A. Sargsyan, and Kh. V. Sedrakian, J. Exp. Theor. Phys. 134, 125 (2022).

    Article  ADS  Google Scholar 

  57. A. D. Guclu, P. Potasz, M. Korkusinski, and P. Hawrylak, Graphene Quantum Dots (Springer, Berlin, 2014).

    Book  Google Scholar 

  58. S. Gnawali, R. Ghimire, K. Rana, et al., Phys. Rev. B 106, 075149 (2022).

  59. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. A 105, 063504 (2022).

  60. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).

    Article  ADS  Google Scholar 

  61. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).

    Article  ADS  Google Scholar 

  62. Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

  63. M. Ezawa, Phys. E (Amsterdam, Neth.) 40, 1421 (2008).

  64. M. Ezawa, Phys. Rev. B 73, 045432 (2006).

  65. W. Chu, Y. Xie, S. Duan, et al., Phys. Rev. B 82, 125301 (2010).

  66. H. Yoon, M. Park, J. Kim, et al., Chem. Phys. Rev. 2, 031303 (2021).

  67. M. Y. Han, B. Ozyilmaz, Y. Zhang, and Ph. Kim, Phys. Rev. Lett. 98, 206805 (2007).

  68. L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).

  69. Sh. Yamijala, M. Mukhopadhyay, and S. Pati, J. Phys. Chem. C 119, 12079 (2015).

    Article  Google Scholar 

  70. S. Luryi, J. Xu, and A. Zaslavsky, Future Trends in Micro-electronics: Frontiers and Innovations (Wiley, New York, 2013).

    Book  Google Scholar 

  71. A. D. Guclu, P. Potasz, and P. Hawrylak, Phys. Rev. B 82, 155445 (2010).

  72. X. Feng, Y. Qin, and Y. Liu, Opt. Express 26, 7132 (2018).

    Article  ADS  Google Scholar 

  73. A. D. Guclu, P. Potasz, O. Voznyy, et al., Phys. Rev. Lett. 103, 246805 (2009).

  74. O. Voznyy, A. D. Guclu, P. Potasz, and P. Hawrylak, Phys. Rev. B 83, 165417 (2011).

  75. W. L. Wang, S. Meng, and E. Kaxiras, Nano Lett. 8, 241 (2008).

    Article  ADS  Google Scholar 

  76. L. Yang, M. L. Cohen, and S. G. Louie, Nano Lett. 7, 3112 (2007).

    Article  ADS  Google Scholar 

  77. D. Prezzi, D. Varsano, A. Ruini, et al., Phys. Rev. B 77, 041404 (2008).

  78. D. Prezzi, D. Varsano, A. Ruini, and E. Molinari, Phys. Rev. B 84, 041401 (2011).

  79. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Ann. Rev. Mater. Sci. 30, 545 (2000).

    Article  ADS  Google Scholar 

  80. D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, Materials 3, 2260 (2010).

    Article  ADS  Google Scholar 

  81. A. Kumar, S. E. Laux, and F. Stern, Phys. Rev. B 42, 5166 (1990).

    Article  ADS  Google Scholar 

  82. R. C. Ashoori, H. L. Stormer, J. S. Weiner, et al., Phys. Rev. Lett. 71, 613 (1993).

    Article  ADS  Google Scholar 

  83. A. Hogele, S. Seidl, M. Kroner, et al., Phys. Rev. Lett. 93, 217401 (2004).

  84. M. Lewenstein, Ph. Balcou, M. Y. Ivanov, et al., Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  85. R. B. Chen, C. P. Chang, and M. F. Lin, Phys. E (Amsterdam, Neth.) 42, 2812 (2010).

  86. C. P. Chang, Y. C. Huang, C. L. Lu, et al., Carbon 44, 508 (2006).

    Article  Google Scholar 

  87. Y. Qin, X. Feng, and Y. Liu, Appl. Sci. 9, 325 (2019).

    Article  Google Scholar 

  88. B. R. Avchyan, A. G. Ghazaryan, Kh. V. Sedrakian, and S. S. Israelyan, J. Nanophoton. 16, 036001 (2022).

  89. B. R. Avchyan, A. G. Ghazaryan, K. A. Sargsyan, and Kh. V. Sedrakian, JETP Lett. 116, 428 (2022).

    Article  ADS  Google Scholar 

  90. S. Acharya, D. Pashov, A. N. Rudenko, et al., npj Comput. Mater. 7, 208 (2021).

    Google Scholar 

  91. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  Google Scholar 

  92. O. Zurron-Cifuentes, R. Boyero-Garcia, C. Hernandez-Garcia, et al., Opt. Express 27, 7776 (2019).

    Article  ADS  Google Scholar 

  93. H. K. Avetissian, B. R. Avchyan, and G. F. Mkrtchian, J. Phys. B 45, 025402 (2012).

  94. H. K. Avetissian, A. G. Markossian, and G. F. Mkrtchian, Phys. Rev. A 84, 013418 (2011).

  95. H. K. Avetissian, A. G. Markossian, and G. F. Mkrtchian, Phys. Lett. A 375, 3699 (2011).

    Article  ADS  Google Scholar 

  96. G. Vampa, C. R. McDonald, G. Orlando, et al., Phys. Rev. Lett. 113, 073901 (2014).

  97. R. L. Martin and J. P. Ritchie, Phys. Rev. B 48, 4845 (1993).

    Article  ADS  Google Scholar 

  98. G. P. Zhang, Phys. Rev. B 61, 4377 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to prof. H.K. Avetissian and Dr. G.F. Mkrtchian for permanent discussions and valuable recommendations.

Funding

This work was supported by the Science Committee of RA in the Frames of project 21AG-1C014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ghazaryan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by the authors

APPENDIX: INTERACTION HAMILTONIAN

APPENDIX: INTERACTION HAMILTONIAN

Here we presented briefly the total Hamiltonian by the empirical TB model [91] in the form:

$$\hat {H} = {{\hat {H}}_{0}} + {{\hat {H}}_{{\operatorname{int} }}},$$
(5)

where

$${{\hat {H}}_{0}} = \frac{1}{2}\sum\limits_{\langle i,j\rangle }^{} {{{V}_{{ij}}}{{n}_{i}}{{n}_{j}}} + \frac{U}{2}\sum\limits_{i\sigma }^{} {{{n}_{{i\sigma }}}{{n}_{{i\bar {\sigma }}}}} - \sum\limits_{\langle i,j\rangle \sigma }^{} {{{t}_{{ij}}}c_{{i\sigma }}^{\dag }{{c}_{{j\sigma }}}} $$
(6)

is the free rectangular GQD Hamiltonian. Here \(c_{{i\sigma }}^{\dag }\) is the operator of the creation of an electron with spin polarization σ = ( ↑, ↓) at site i, and 〈i, j〉 is the summation over nearest neighbor sites with the transfer energy tij (\(\bar {\sigma }\) is the opposite to spin polarization); and niσ = \(c_{{i\sigma }}^{\dag }\)ciσ is the electron density operator with total electron density for the site i: niσ = ni + ni. The first and the second terms in free Hamiltonian (6) correspond to the EEI within the extended Hubbard approximation (\({{\hat {H}}_{{ee}}}\)) with inter-site Vij and on-site U Coulomb repulsion energies. The inter-site Coulomb repulsion is described by the distance dij between the nearest-neighbour pairs varied over the system: Vij = Vdmin/dij (dmin is the the minimal nearest-neighbor distance). For all calculations we have taken V = 0.3U [97, 98]. The third term in (6) is the kinetic energy part of the TB Hamiltonian with tunneling matrix element tij-neighboring sites. The hopping integral tij between the nearest-neighbor atoms of GQDs can be determined experimentally, and is usually-taken to be tij = 2.7 eV [57]. Note, that we neglected the lattice vibrations in the Hamiltonian.

The laser-rectangular GQD interaction is described in the length-gauge via the scalar potential:

$${{\hat {H}}_{{\operatorname{int} }}} = e\sum\limits_{i\sigma }^{} {{{{\mathbf{r}}}_{i}} \cdot {\mathbf{E}}(r)c_{{i\sigma }}^{\dag }{{c}_{{i\sigma }}},} $$

where ri is the position vector, e is the elementary charge. We will obtain evolutionary equations for the single-particle density matrix \(\rho _{{ij}}^{{(\sigma )}}\) = 〈\(c_{{j\sigma }}^{\dag }\)ciσ〉 from the Heisenberg equation i\(\hbar \)\(\hat {L}\)/∂t = [\(\hat {L}\), \(\hat {H}\)], where L is a Lagrangian of a quantum system. Let us the system relaxes at a rate γ to the equilibrium \(\rho _{{0ij}}^{{(\sigma )}}\) distribution. The EEI will be considered under the Hartree–Fock approximation, and to describe a closed set of equations for the single-particle density matrix \(\rho _{{ij}}^{{(\sigma )}}\), we will assume the Hamiltonian (6) in the form:

$$\begin{gathered} \hat {H}_{0}^{{HF}} \simeq - \sum\limits_{\langle i,j\rangle \sigma }^{} {{{t}_{{ij}}}c_{{i\sigma }}^{\dag }{{c}_{{j\sigma }}} + U\sum\limits_i^{} {({{{\bar {n}}}_{{i \uparrow }}} - {{{\bar {n}}}_{{0i \uparrow }}}){{n}_{{i \downarrow }}}} } \\ \, + U\sum\limits_{i\sigma }^{} {({{{\bar {n}}}_{{i \downarrow }}} - {{{\bar {n}}}_{{0i \downarrow }}}){{n}_{{i \uparrow }}}} + \sum\limits_{\langle i,j\rangle }^{} {{{V}_{{ij}}}({{{\bar {n}}}_{j}} - {{{\bar {n}}}_{{0j}}}){{n}_{i}}} \\ - \sum\limits_{\langle i,j\rangle \sigma }^{} {{{V}_{{ij}}}c_{{i\sigma }}^{\dag }{{c}_{{j\sigma }}}(\langle c_{{i\sigma }}^{\dag }c_{{j\sigma }}^{{}}\rangle - {{{\langle c_{{i\sigma }}^{\dag }c_{{j\sigma }}^{{}}\rangle }}_{0}}),} \\ \end{gathered} $$
(7)

with \({{\bar {n}}_{{i\sigma }}}\) = 〈\(c_{{i\sigma }}^{\dag }\)ciσ〉 = \(\rho _{{ii}}^{{(\sigma )}}\). Thus, the following equation for the density matrix is obtained:

$$\begin{gathered} i\hbar \frac{{\partial \rho _{{ij}}^{{(\sigma )}}}}{{\partial t}} = \sum\limits_k^{} {({{\tau }_{{kj\sigma }}}\rho _{{ik}}^{{(\sigma )}} - {{\tau }_{{ik\sigma }}}\rho _{{kj}}^{{(\sigma )}}) + ({{V}_{{i\sigma }}} - {{V}_{{j\sigma }}})} \rho _{{ij}}^{{(\sigma )}} \\ \, + e{\mathbf{E}} \cdot ({{{\mathbf{r}}}_{i}} - {{{\mathbf{r}}}_{j}})\rho _{{ij}}^{{(\sigma )}} - i\hbar \gamma (\rho _{{ij}}^{{(\sigma )}} - \rho _{{0ij}}^{{(\sigma )}}), \\ \end{gathered} $$
(8)

and the matrixes Viσ, τijσ are approximated by the density matrix ∂\(\rho _{{ij}}^{{(\sigma )}}\):

$$\begin{gathered} {{V}_{{i\sigma }}} = \sum\limits_{j\alpha }^{} {{{V}_{{ij}}}(\rho _{{jj}}^{{(\alpha )}} - \rho _{{0jj}}^{{(\alpha )}}) + U(\rho _{{ii}}^{{(\bar {\sigma })}} - \rho _{{0ii}}^{{(\bar {\sigma })}})} , \\ {{\tau }_{{ij\sigma }}} = {{t}_{{ij}}} + {{V}_{{ij}}}(\rho _{{ji}}^{{(\sigma )}} - \rho _{{0ji}}^{{(\sigma )}}). \\ \end{gathered} $$
(9)

In this representation, the initial value of density matrix 〈\(c_{{i\sigma }}^{\dag }{{c}_{{j\sigma }}}\)0 is defined via TB Hamiltonian \(\hat {H}_{0}^{{TB}} = - \sum\limits_{\langle i,j\rangle \sigma }^{} {{{t}_{{ij}}}c_{{i\sigma }}^{\dag }{{c}_{{j\sigma }}}.} \) We will numerically diagonalize the TB Hamiltonian \({{\hat {H}}_{0}}\). That is, in the static limit the Hartree–Fock Hamiltonian vanishes \(\hat {H}_{{ee}}^{{HF}}\) \( \simeq \) 0, and the EEI in Hartree–Fock limit is included in empirical hopping integral between the nearest-neighbor tij which is chosen to be close to experimental data [57]. Thus, the EEI in the Hartree–Fock approximation is correspond only to quantum dynamics initiated by the pump laser field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedrakian, K.V., Ghazaryan, A.G., Avchyan, B.R. et al. High Harmonic Generation with Many-Particle Coulomb Interaction in Graphene Quantum Dot. J. Exp. Theor. Phys. 137, 47–54 (2023). https://doi.org/10.1134/S1063776123070026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123070026

Navigation