Skip to main content
Log in

On the Theory of Nucleation of Ionic Salts from Aqueous Solution

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The theory of nucleation of ionic salts from aqueous solution is critically analyzed and further developed in two limiting cases of sparingly and highly soluble strong electrolytes. In the case of sparingly soluble colloids with a relatively large screening length (compared to the radius of the critical nucleus), the classical nucleation theory is modified by taking into account the influence of the critical nucleus charge on the nucleation rate, which was disregarded in earlier models. In the opposite limit of highly soluble colloids which are characterized by a relatively small screening length, the influence of the critical nucleus charge on the nucleation rate can be neglected with good accuracy. However, the discrepancy with earlier models, mainly related to the value of the pre-exponential factor, can reach several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. R. H. Doremus, J. Phys. Chem. 62, 1068 (1958).

    Article  Google Scholar 

  2. P.-P. Chiang and M. D. Donohue, J. Colloid Interface Sci. 122, 230 (1988).

    Article  ADS  Google Scholar 

  3. P.-P. Chiang, M. D. Donohue, and J. L. Katz, J. Colloid Interface Sci. 122, 251 (1988).

    Article  ADS  Google Scholar 

  4. R. J. Hunter, Introduction to Modern Colloid Science (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  5. J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. 2: Solid-Liquid Interfaces (Academic, New York, 1995).

  6. M. Volmer and A. Weber, Z. Phys. Chem. 119, 253 (1926).

    Google Scholar 

  7. R. Becker and W. Doering, Ann. Phys. 24, 719 (1935).

    Article  Google Scholar 

  8. Ja. B. Zeldovich, Acta Physicochim. URSS 18, 1 (1943).

  9. T. P. Melia, J. Appl. Chem. 15, 345 (1965).

    Article  Google Scholar 

  10. A. Mersmann and M. Kind, Chem. Eng. Technol. 11, 264 (1988).

    Article  Google Scholar 

  11. A. W. Adamson, Textbook of Physical Chemistry (Academic, New York, 1973).

    Google Scholar 

  12. G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey, Jr., and S. K. Singer, J. Phys. Chem. Ref. Data 6, 409 (1977).

    Article  ADS  Google Scholar 

  13. P. Arendt and H. Kallmann, Zeitschr. Phys. 35, 421 (1926).

    Article  ADS  Google Scholar 

  14. J. Tb. G. Overbeek, in Colloid Science, Ed. by H. R. Kruyt (Elsevier, Amsterdam, 1952), Vol. 1, p. 162.

    Google Scholar 

  15. M. Kind and A. Mersmann, Chem. Ing. Technol. 55, 720 (1983).

    Article  Google Scholar 

  16. A. A. Chernov, Sov. Phys. Usp. 4, 116 (1961).

    Article  ADS  Google Scholar 

  17. S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behaviour (Wiley, New York, 1977).

    Google Scholar 

  18. M. S. Veshchunov, J. Nucl. Mater. 571, 154021 (2022).

  19. D. Kashchiev and G. M. van Rosmalen, Cryst. Res. Technol. 38, 555 (2003).

    Article  Google Scholar 

  20. L. G. Sillen and A. E. Martell, Soil Sci. 100, 74 (1964).

    Article  ADS  Google Scholar 

  21. A. E. Nielsen, Pure Appl. Chem. 53, 2025 (1981).

    Article  Google Scholar 

  22. J. H. Jonte and D. S. Martin, J. Am. Chem. Soc. 74, 2052 (1952).

    Article  Google Scholar 

  23. A. E. Nielsen, Acta Chem. Scand. 15, 441 (1961).

    Article  Google Scholar 

  24. A. E. Nielsen, Krist. Tech. 4, 17 (1969).

    Article  Google Scholar 

  25. G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides, Chem. Rev. 116, 7078 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Dr. V. Tarasov (IBRAE, Moscow) for critical reading of the manuscript, valuable corrections, and assistance in numerical calculations (Figs. 13).

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Veshchunov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veshchunov, M.S. On the Theory of Nucleation of Ionic Salts from Aqueous Solution. J. Exp. Theor. Phys. 136, 741–750 (2023). https://doi.org/10.1134/S1063776123060110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123060110

Navigation