Skip to main content
Log in

Pure Spin Current Injection into a Helimagnet

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The injection of a pure spin current into a conducting helimagnet is investigated. The characteristic decay lengths for the spin current injected into the helimagnet are determined, and their physical meaning is described. It is shown that instead of the spin diffusion length, helimagnets are characterized by the decay length that is always smaller than the spin diffusion length, the difference in these lengths being determined by the ratio of the helimagnet spiral period to the spin diffusion length. We predict the existence of the “effect of the chiral polarization of a pure spin current,” i.e., the emergence of the spin current with longitudinal (transverse) polarization, which depends on the spiral chirality, upon the injection of a pure spin current with the transverse (longitudinal) polarization relative to the spiral axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  2. Spin Current, Ed. by S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura (Oxford Univ. Press, New York, 2017), p. 520.

    Google Scholar 

  3. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotskii, V. K. Sakharov, and E. S. Pavlov, Phys. Usp. 58, 1002 (2015).

    Article  ADS  Google Scholar 

  4. M. I. D’yakonov and V. I. Perel, JETP Lett. 13, 467 (1971).

    ADS  Google Scholar 

  5. M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971).

    Article  ADS  Google Scholar 

  6. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).

    Article  ADS  Google Scholar 

  7. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

  8. D. Xiong, Y. Jiang, K. Shi, A. Du, Y. Yao, Z. Guo, D. Zhu, K. Cao, S. Peng, W. Cai, D. Zhu, and W. Zhao, Fundam. Res. 2, 522 (2022).

    Article  Google Scholar 

  9. H. Chen, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 112, 017205 (2014).

  10. Y. Takeuchi, Y. Yamane, J. Y. Yoon, R. Itoh, B. Jinnai, S. Kanai, J. Ieda, S. Fukami, and H. Ohno, Nat. Mater. 20, 1364 (2021).

    Article  ADS  Google Scholar 

  11. Yu. A. Izyumov, Sov. Phys. Usp. 27, 845 (1984).

    Article  ADS  Google Scholar 

  12. R. J. Elliott and F. A. Wedgwood, Proc. Phys. Soc. 81, 846 (1963).

    Article  ADS  Google Scholar 

  13. R. J. Elliott and F. A. Wedgwood, Proc. Phys. Soc. 84, 63 (1964).

    Article  ADS  Google Scholar 

  14. A. A. Fraerman and O. G. Udalov, Phys. Rev. B 77, 094401 (2008).

  15. T. Taniguchi and H. Imamura, Phys. Rev. B 81, 012405 (2010).

  16. J.-i. Kishine and A. S. Ovchinnikov, Solid State Phys. 66, 1 (2015).

    Article  Google Scholar 

  17. T. Yokouchi, N. Kanazawa, A. Kikkawa, D. Morikawa, K. Shibata, T. Arima, Y. Taguchi, F. Kagawa, and Y. Tokura, Nat. Commun. 8, 866 (2017).

    Article  ADS  Google Scholar 

  18. R. Aoki, Y. Kousaka, and Y. Togawa, Phys. Rev. Lett. 122, 057206 (2019).

  19. V. V. Ustinov and I. A. Yasyulevich, Phys. Rev. B 102, 134431 (2020).

  20. S. Okumura, T. Morimoto, Y. Kato, and Y. Motome, J. Phys.: Conf. Ser. 2164, 012068 (2022).

  21. J. Xiao, A. Zangwill, and M. D. Stiles, Phys. Rev. B 73, 054428 (2006).

  22. H. Watanabe, K. Hoshi, and J.-i. Ohe, Phys. Rev. B 94, 125143 (2016).

  23. S. Okumura, H. Ishizuka, Y. Kato, J.-i. Ohe, and Y. Motome, Appl. Phys. Lett. 115, 012401 (2019).

  24. V. Ustinov, N. Bebenin, and I. Yasyulevich, J. Phys.: Conf. Ser. 1389, 012151 (2019).

  25. V. V. Ustinov and I. A. Yasyulevich, Phys. Met. Metallogr. 121, 223 (2020).

    Article  ADS  Google Scholar 

  26. E. A. Karashtin, Phys. Solid State 62, 1647 (2020).

    Article  ADS  Google Scholar 

  27. A. Aqeel, N. Vlietstra, J. A. Heuver, G. E. W. Bauer, B. Noheda, B. J. van Wees, and T. T. M. Palstra, Phys. Rev. B 92, 224410 (2015).

  28. A. Aqeel, N. Vlietstra, A. Roy, M. Mostovoy, B. J. van Wees, and T. T. M. Palstra, Phys. Rev. B 94, 134418 (2016).

  29. A. Aqeel, M. Mostovoy, B. J. van Wees, and T. T. M. Palstra, J. Phys. D: Appl. Phys. 50, 174006 (2017).

  30. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974), p. 1032.

  31. H. C. Torrey, Phys. Rev. 104, 563 (1956).

    Article  ADS  Google Scholar 

  32. C. Heide, Phys. Rev. B 65, 054401 (2001).

  33. L. S. Levitov, Yu. V. Nazarov, and G. M. Eliashberg, Sov. Phys. JETP 61, 133 (1985).

    ADS  Google Scholar 

  34. T. Furukawa, Y. Shimokawa, K. Kobayashi, and T. Itou, Nat. Commun. 8, 954 (2017).

    Article  ADS  Google Scholar 

  35. T. Furukawa, Y. Watanabe, N. Ogasawara, K. Kobayashi, and T. Itou, Phys. Rev. Res. 3, 023111 (2021).

  36. Y. Nabei, D. Hirobe, Y. Shimamoto, K. Shiota, A. Inui, Y. Kousaka, Y. Togawa, and H. M. Yamamoto, Appl. Phys. Lett. 117, 052408 (2020).

  37. A. Inui, R. Aoki, Y. Nishiue, K. Shiota, Y. Kousaka, H. Shishido, D. Hirobe, M. Suda, J.-i. Ohe, J. I. Kishine, H. M. Yamamoto, and Y. Togawa, Phys. Rev. Lett. 124, 166602 (2020).

  38. K. Shiota, A. Inui, Y. Hosaka, R. Amano, Y. Onuki, M. Hedo, T. Nakama, D. Hirobe, J.-i. Ohe, J.‑i. Kishine, H. M. Yamamoto, H. Shishido, and Y. Togawa, Phys. Rev. Lett. 127, 126602 (2021).

  39. H. Shishido, R. Sakai, Y. Hosaka, and Y. Togawa, Appl. Phys. Lett. 119, 182403 (2021).

  40. J. Bass and W. P. Pratt, Jr., J. Phys.: Condens. Matter 19, 183201 (2007).

  41. C. Fang, C. H. Wan, B. S. Yang, J. Y. Qin, B. S. Tao, H. Wu, X. Zhang, X. F. Han, A. Hoffmann, X. M. Liu, and Z. M. Jin, Phys. Rev. B 96, 134421 (2017).

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 22-22-00220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Yasyulevich or V. V. Ustinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Appendices

APPENDIX A

Using the Cardano formulas, we write the exact solution to characteristic equation (6) in form

$$\begin{gathered} {{\kappa }_{1}} = \sqrt {1 - (2{\text{/}}3){{\eta }^{2}} + U + W} , \\ {{\kappa }_{2}} = (1{\text{/}}\sqrt 2 )(\sqrt {{{{(1 - (2{\text{/}}3){{\eta }^{2}} + \operatorname{Re} V)}}^{2}} + {{{(\operatorname{Im} V)}}^{2}}} \\ + 1 - (2{\text{/}}3){{\eta }^{2}} + \operatorname{Re} V{{)}^{{1/2}}} + i\operatorname{sgn} (\operatorname{Im} V)(1{\text{/}}\sqrt 2 ) \\ \, \times (\sqrt {{{{(1 - (2{\text{/}}3){{\eta }^{2}} + \operatorname{Re} V)}}^{2}} + {{{(\operatorname{Im} V)}}^{2}}} \\ - 1 + (2{\text{/}}3){{\eta }^{2}} - \operatorname{Re} V{{)}^{{1/2}}}, \\ {{\kappa }_{3}} = \kappa _{2}^{*}, \\ \end{gathered} $$
(12)

where

$$\begin{gathered} V = - (U + W){\text{/}}2 + i\sqrt 3 (U - W){\text{/}}2, \\ U = \sqrt[3]{{\frac{{{{\eta }^{2}}}}{6}\left( {\frac{2}{9}{{\eta }^{4}} + 8{{\eta }^{2}} + 5{{\lambda }^{2}}} \right) + \sqrt G }}, \\ W = \sqrt[3]{{\frac{{{{\eta }^{2}}}}{6}\left( {\frac{2}{9}{{\eta }^{4}} + 8{{\eta }^{2}} + 5{{\lambda }^{2}}} \right) - \sqrt G }}, \\ G = \frac{1}{{27}}{{\left( { - \frac{1}{3}{{\eta }^{4}} + 4{{\eta }^{2}} + {{\lambda }^{2}}} \right)}^{3}}\, + \,\frac{{{{\eta }^{4}}}}{{36}}{{\left( {\frac{2}{9}{{\eta }^{4}} + 8{{\eta }^{2}} + 5{{\lambda }^{2}}} \right)}^{2}}. \\ \end{gathered} $$
(13)

APPENDIX B

To find approximate solutions to characteristic equation (6), we can use the following algorithm.

1. Case with λ ≫ 1 + η2. Performing identity transformations, we write characteristic equation (6) in form

$$\begin{gathered} {{\kappa }^{2}} = 1 + {{\eta }^{2}} \\ \, - ({{\kappa }^{2}} - 1)[{{({{\kappa }^{2}} - 1 - {{\eta }^{2}})}^{2}} + 4{{\eta }^{2}}{{\kappa }^{2}}]{\text{/}}{{\lambda }^{2}}. \\ \end{gathered} $$
(14)

In view of smallness of parameter (1 + η2)/λ, this equation can be solved by the method of successive approximation. In the main approximation in small parameter (1 + η2)/λ, we obtain κ = κ1 = \(\sqrt {1 + {{\eta }^{2}}} \). This gives the following expression for LD: LD = LS/\(\sqrt {1 + {{\eta }^{2}}} \).

To obtain root κ2, we write characteristic equation (6) in identical form

$${{\kappa }^{4}} = \frac{{ - {{\lambda }^{2}}}}{{\left( {1 - \frac{1}{{{{\kappa }^{2}}}}} \right)\left[ {\left( {1 - \frac{{(1 + {{\eta }^{2}})}}{{{{\kappa }^{2}}}}} \right) + \frac{{4{{\eta }^{2}}{\text{/}}{{\kappa }^{2}}}}{{1 - (1 + {{\eta }^{2}}){\text{/}}{{\kappa }^{2}}}}} \right]}}$$
(15)

and use the method of iterations again. In the zeroth approximation in (1 + η2)/λ, it follows from expression (15) that κ = κ2 = (1 + i)\(\sqrt {\lambda {\text{/}}2} \). This gives LP = LS/\(\sqrt {\lambda {\text{/}}2} \).

2. Case with λ ≪ 1 + η2. To find the solution to Eq. (6) in the zeroth approximation in small parameter λ/(1 + η2), it is sufficient to solve equation

$$({{\kappa }^{2}} - 1)[{{({{\kappa }^{2}} - 1 - {{\eta }^{2}})}^{2}} + 4{{\eta }^{2}}{{\kappa }^{2}}] = 0,$$
(16)

which has been formally obtained from Eq. (6) for λ = 0. The real-valued solution to this equation is κ = κ1 = 1. Two other roots of Eq. (16) are κ = κ2,3 = 1 ± iη. It follows hence that in the given limiting case, decay lengths LD and LP are identical and coincide with spin diffusion length LS: LD = LP = LS.

APPENDIX C

The coordinate dependence of the nonequilibrium magnetization of conduction electrons in a helimagnet, which has been obtained using exact roots (12) of the characteristic equation, can be written in form

$$\begin{gathered} \delta {{m}_{x}} = {{C}_{1}}{{e}^{{ - {{\kappa }_{1}}\zeta }}}\operatorname{Re} ({{\Psi }_{1}}{{e}^{{iK\eta \zeta }}}) \\ + \operatorname{Re} ({{\Psi }_{2}}{{C}_{2}}{{e}^{{ - {{\kappa }_{2}}\zeta }}}{{e}^{{iK\eta \zeta }}}) + \operatorname{Re} ({{\Psi }_{3}}C_{2}^{*}{{e}^{{ - \kappa _{2}^{*}\zeta }}}{{e}^{{iK\eta \zeta }}}), \\ \delta {{m}_{y}} = {{C}_{1}}{{e}^{{ - {{\kappa }_{1}}\zeta }}}\operatorname{Im} ({{\Psi }_{1}}{{e}^{{iK\eta \zeta }}}) \\ + \operatorname{Im} ({{\Psi }_{2}}{{C}_{2}}{{e}^{{ - {{\kappa }_{2}}\zeta }}}{{e}^{{iK\eta \zeta }}}) + \operatorname{Im} ({{\Psi }_{3}}C_{2}^{*}{{e}^{{ - \kappa _{2}^{*}\zeta }}}{{e}^{{iK\eta \zeta }}}), \\ \delta {{m}_{z}} = {{C}_{1}}{{e}^{{ - {{\kappa }_{1}}\zeta }}} + 2\operatorname{Re} ({{C}_{2}}{{e}^{{ - {{\kappa }_{2}}\zeta }}}), \\ \end{gathered} $$
(17)

where

$${{\Psi }_{n}} = \frac{{i\lambda }}{{\kappa _{n}^{2} - 1 - {{\eta }^{2}} - 2iK\eta {{\kappa }_{n}}}},$$
$${{C}_{1}} = {{\Delta }_{{{{C}_{1}}}}}{\text{/}}\Delta ,$$
$${{C}_{2}} = ({{\Delta }_{{\operatorname{Re} {{C}_{2}}}}} + i{{\Delta }_{{\operatorname{Im} {{C}_{2}}}}}){\text{/}}\Delta ,$$
$$\begin{gathered} {{\Delta }_{{{{C}_{1}}}}} = - 2({{\Phi }_{5}}\operatorname{Im} {{\kappa }_{2}} + {{\Phi }_{6}}\operatorname{Re} {{\kappa }_{2}}){{{\tilde {P}}}_{x}} \\ \, + 2({{\Phi }_{2}}\operatorname{Im} {{\kappa }_{2}} + {{\Phi }_{3}}\operatorname{Re} {{\kappa }_{2}}){{{\tilde {P}}}_{y}} + ({{\Phi }_{2}}{{\Phi }_{6}} - {{\Phi }_{3}}{{\Phi }_{5}}){{{\tilde {P}}}_{z}}, \\ \end{gathered} $$
$$\begin{gathered} {{\Delta }_{{\operatorname{Re} {{C}_{2}}}}} = (2{{\Phi }_{4}}\operatorname{Im} {{\kappa }_{2}} + {{\kappa }_{1}}{{\Phi }_{6}}){{{\tilde {P}}}_{x}} \\ \, - (2{{\Phi }_{1}}\operatorname{Im} {{\kappa }_{2}} + {{\kappa }_{1}}{{\Phi }_{3}}){{{\tilde {P}}}_{y}} + ({{\Phi }_{3}}{{\Phi }_{4}} - {{\Phi }_{1}}{{\Phi }_{6}}){{{\tilde {P}}}_{z}}, \\ \end{gathered} $$
$$\begin{gathered} {{\Delta }_{{\operatorname{Im} {{C}_{2}}}}} = - ({{\kappa }_{1}}{{\Phi }_{5}} + 2{{\Phi }_{4}}\operatorname{Re} {{\kappa }_{2}}){{{\tilde {P}}}_{x}} \\ \, - (2{{\Phi }_{1}}\operatorname{Re} {{\kappa }_{2}} + {{\kappa }_{1}}{{\Phi }_{2}}){{{\tilde {P}}}_{y}} + ({{\Phi }_{1}}{{\Phi }_{5}} - {{\Phi }_{2}}{{\Phi }_{4}}){{{\tilde {P}}}_{z}}, \\ \end{gathered} $$
$$\begin{gathered} \Delta = - 2{{\Phi }_{1}}({{\Phi }_{5}}\operatorname{Im} {{\kappa }_{2}} + {{\Phi }_{6}}\operatorname{Re} {{\kappa }_{2}}) \\ \, + {{\Phi }_{2}}(2{{\Phi }_{4}}\operatorname{Im} {{\kappa }_{2}} + {{\kappa }_{1}}{{\Phi }_{6}}) - {{\Phi }_{3}}({{\kappa }_{1}}{{\Phi }_{5}} - 2{{\Phi }_{4}}\operatorname{Re} {{\kappa }_{2}}), \\ \end{gathered} $$
$${{\tilde {P}}_{x}} = ({{\tau }_{S}}{\text{/}}{{L}_{S}})({{{\mathbf{P}}}_{0}} \cdot {{{\mathbf{e}}}_{x}}),$$
$${{\tilde {P}}_{y}} = ({{\tau }_{S}}{\text{/}}{{L}_{S}})({{{\mathbf{P}}}_{0}} \cdot {{{\mathbf{e}}}_{y}}),$$
$${{\tilde {P}}_{z}} = ({{\tau }_{S}}{\text{/}}{{L}_{S}})({{{\mathbf{P}}}_{0}} \cdot {{{\mathbf{e}}}_{z}}),$$
$${{\Phi }_{1}} = {{\kappa }_{1}}\operatorname{Re} {{\Psi }_{1}} + K\eta \operatorname{Im} {{\Psi }_{1}},$$
$$\begin{gathered} {{\Phi }_{2}} = K\eta \operatorname{Im} {{\Psi }_{2}} + K\eta \operatorname{Im} {{\Psi }_{3}} \\ + \operatorname{Re} ({{\Psi }_{2}})\operatorname{Re} ({{\kappa }_{2}}) - \operatorname{Im} ({{\Psi }_{2}})\operatorname{Im} ({{\kappa }_{2}}) \\ + \operatorname{Re} ({{\Psi }_{3}})\operatorname{Re} ({{\kappa }_{2}}) + \operatorname{Im} ({{\Psi }_{3}})\operatorname{Im} ({{\kappa }_{2}}), \\ \end{gathered} $$
$$\begin{gathered} {{\Phi }_{3}} = K\eta \operatorname{Re} {{\Psi }_{2}} - K\eta \operatorname{Re} {{\Psi }_{3}} \\ - \operatorname{Re} ({{\Psi }_{2}})\operatorname{Im} ({{\kappa }_{2}}) - \operatorname{Im} ({{\Psi }_{2}})\operatorname{Re} ({{\kappa }_{2}}) \\ - \operatorname{Re} ({{\Psi }_{3}})\operatorname{Im} ({{\kappa }_{2}}) + \operatorname{Im} ({{\Psi }_{3}})\operatorname{Re} ({{\kappa }_{2}}), \\ \end{gathered} $$
$${{\Phi }_{4}} = {{\kappa }_{1}}\operatorname{Im} {{\Psi }_{1}} - K\eta \operatorname{Re} {{\Psi }_{1}},$$
$$\begin{gathered} {{\Phi }_{5}} = - K\eta \operatorname{Re} {{\Psi }_{2}} - K\eta \operatorname{Re} {{\Psi }_{3}} \\ + \operatorname{Re} ({{\Psi }_{2}})\operatorname{Im} ({{\kappa }_{2}}) + \operatorname{Im} ({{\Psi }_{2}})\operatorname{Re} ({{\kappa }_{2}}) \\ - \operatorname{Re} ({{\Psi }_{3}})\operatorname{Im} ({{\kappa }_{2}}) + \operatorname{Im} ({{\Psi }_{3}})\operatorname{Re} ({{\kappa }_{2}}), \\ \end{gathered} $$
$$\begin{gathered} {{\Phi }_{6}} = K\eta \operatorname{Im} {{\Psi }_{2}} - K\eta \operatorname{Im} {{\Psi }_{3}} \\ + \operatorname{Re} ({{\Psi }_{2}})\operatorname{Re} ({{\kappa }_{2}}) - \operatorname{Im} ({{\Psi }_{2}})\operatorname{Im} ({{\kappa }_{2}}) \\ - \operatorname{Re} ({{\Psi }_{3}})\operatorname{Re} ({{\kappa }_{2}}) - \operatorname{Im} ({{\Psi }_{3}})\operatorname{Im} ({{\kappa }_{2}}). \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasyulevich, I.A., Bebenin, N.G. & Ustinov, V.V. Pure Spin Current Injection into a Helimagnet. J. Exp. Theor. Phys. 136, 509–518 (2023). https://doi.org/10.1134/S1063776123040143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123040143

Navigation