Skip to main content
Log in

Critical Point in the Curve of First-Order Magnetic Phase Transition

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A magnetic state diagram for ferromagnets exhibiting a first-order phase transition in a magnetic field has been calculated. Calculations have been made using the exchange-striction model of a ferromagnet. It has been shown that the curve of first-order magnetic phase transition ends up at a critical point (Hcr, Tcr) that is similar to the critical point of the liquid–gas transition on the (T, P) plane. Analytical expressions for thermodynamic quantities, namely, magnetic susceptibility, specific heat, and compressibility, which anomalously grow near the critical point, have been derived. Calculation results have been compared with available experimental data for La(Fe0.88Si0.12)13 ferromagnet, which experiences the first-order magnetic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Symmetry of Crystals (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  2. A. B. Western, A. G. Baker, C. R. Bacon, et al., Phys. Rev. B 17, 4461 (1978).

    Article  ADS  Google Scholar 

  3. L. Pytlik and A. Zieba, J. Magn. Magn. Mater. 51, 199 (1985).

    Article  ADS  Google Scholar 

  4. E. Z. Valiev, Phys. Met. Metallogr. 96, 121 (2003).

    Google Scholar 

  5. E. Z. Valiev and F. S. Shemet’ev, JETP Lett. 79, 427 (2004).

    Article  ADS  Google Scholar 

  6. E. Z. Valiev and F. S. Shemet’ev, Phys. Met. Metallogr. 102, 127 (2006).

    Article  ADS  Google Scholar 

  7. T. Sakakibara, T. Tayama, Z. Hiroi, et al., Phys. Rev. Lett. 90, 207205 (2003).

  8. A. Hidekazu, T. Sakakibara, K. Matsuhira, et al., J. Phys. Soc. Jpn. 73, 2851 (2004).

    Article  ADS  Google Scholar 

  9. C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature (London, U.K.) 451, 42 (2008).

    Article  ADS  Google Scholar 

  10. J. Larrea Jimenez, S. P. G. Crone, E. Fogh, et al., Nature (London, U.K.) 592, 370 (2021).

    Article  ADS  Google Scholar 

  11. A. Fujita, K. Fukamishi, M. Yamada, et al., J. Appl. Phys. 93, 7263 (2003).

    Article  ADS  Google Scholar 

  12. H. Yamada, K. Fukamishi, and T. Goto, Phys. B (Amsterdam, Neth.) 327, 148 (2003).

  13. C. P. Bean and D. S. Rotbell, Phys. Rev. 1, 104 (1962).

    Article  ADS  Google Scholar 

  14. E. Z. Valiev, J. Exp. Theor. Phys. 108, 279 (2009).

    Article  ADS  Google Scholar 

  15. A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamishi, Phys. Rev. B 65, 0144110 (2001).

  16. A. Fujita, Y. Akamatsu, and K. Fukamishi, J. Appl. Phys. 85, 475 (1999).

    Google Scholar 

  17. A. Fujita, S. Fujieda, Y. Hasegava, et al., Phys. Rev. B 67, 104416 (2003).

  18. N. L. Huang and R. Orbach, Phys. Rev. Lett. 12, 275 (1964).

    Article  ADS  Google Scholar 

  19. E. E. Kokorina and M. V. Medvedev, Phys. Met. Metallogr. 122, 1045 (2021).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The results of work were obtained at IMP Neutron Material Science Complex within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “FLUX” no. 122021000031-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Valiev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Isaakyan

APPENDIX

APPENDIX

After substituting ω (3) into the formula J = J0 + γω, the expression for x from (2) takes the form

$$x = d + am + b{{m}^{3}},$$
(A.1)

where

$$d = \frac{{2\mu sH}}{{kT}},\quad a = \frac{{3sT_{C}^{0}(P)}}{{(s + 1)T}},$$
$$b = 2{{s}^{4}}NK_{0}^{{ - 1}}\frac{{{{\gamma }^{2}}}}{{kT}},$$

and

$$T_{C}^{0}(P) = 2s(s + 1)({{J}_{0}} - K_{0}^{{ - 1}}P\gamma ){\text{/}}3k$$

is the pressure-dependent Curie point for the first-order PT.

The expansion of the Brillouin function into a series up x5 has the form

$${{B}_{S}}(x) = Ex - F{{x}^{3}} + G{{x}^{5}},$$
(A.2)

where

$$\begin{gathered} E = \frac{{s + 1}}{{3s}},\quad F = \frac{{{{{(2s + 1)}}^{4}} - 1}}{{45{{{(2s)}}^{4}}}}, \\ G = 2\frac{{{{{(2s + 1)}}^{5}} - 1}}{{945{{{(2s)}}^{5}}}}. \\ \end{gathered} $$

Then, the equation of magnetic state takes the form of (4) where

$$\begin{gathered} A = \frac{{T - T_{C}^{0}(P)}}{T},\quad B = {{a}^{3}}F - Eb, \\ C = 3F{{a}^{2}}b - G{{a}^{5}}. \\ \end{gathered} $$
(A.3)

In calculations, we used the values of quantities appearing in (A.1)–(A.3) for La(Fe0.88Si0.12)13 ferromagnet: s = 1, N = 6 × 1023 cm–3, K0 = 1.1 × 1012 dyne/cm2, γ = 4.89 × 10–13 erg, and \(T_{C}^{0}\) = 189 K (at P = 0). These values were determined from experimental data reported in [11, 15–17; see also [14]. The final values of \(T_{C}^{0}\) and γ were taken from the coincidence condition for the calculated and experimental (TC1 ≈ 196 K [15]) temperatures of first-order PTs.

From equations of state (3) and (4), we arrive at a formula to calculate thermodynamic quantities near critical point (Tcr, Hcr). For example, having differentiated Eq. (3) with respect to pressure, we obtain a formula for compressibility,

$$ - \frac{{\partial \omega }}{{\partial P}} = K_{0}^{{ - 1}} - N{{s}^{2}}m\gamma \frac{{\partial m}}{{\partial P}},$$
(A.4)

and from Eq. (4) it follows that

$$m\frac{{\partial A}}{{\partial P}} + (A + 3B{{m}^{2}} + 5C{{m}^{4}})\frac{{\partial m}}{{\partial P}} = 0,$$

and

$$\frac{{\partial m}}{{\partial P}} = - 2s(s\, + \,1)m\frac{\gamma }{{3kT{{K}_{0}}}}{{(A\, + \,3B{{m}^{2}}\, + \,5C{{m}^{4}})}^{{ - 1}}}.$$
(A.5)

Then,

$${{K}^{{ - 1}}} \equiv - {{\left( {\frac{{\partial \omega }}{{\partial P}}} \right)}_{T}}\, = \,K_{0}^{{ - 1}}\left[ {1 + \frac{{{{s}^{3}}(s + 1){{\gamma }^{2}}}}{{2{{\mu }^{2}}{{K}_{0}}}}\chi } \right],$$
(A.6)

where

$$\chi = {{\left( {\frac{{\partial M}}{{\partial H}}} \right)}_{T}} = \frac{{8{{\mu }^{2}}N}}{{(3kT)(A + 3B{{m}^{2}} + 5C{{m}^{4}})}}$$
(A.7)

is the magnetic susceptibility at T = const (M = 2μsNm).

The thermal expansion coefficient is found in the same way:

$$\alpha = {{\left( {\frac{{\partial \omega }}{{\partial T}}} \right)}_{P}} \approx \frac{{ - 8\mu {{s}^{3}}\gamma mNH}}{{3k{{K}_{0}}{{T}^{2}}(A + 3B{{m}^{2}} + 5C{{m}^{4}})}}.$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiev, E.Z. Critical Point in the Curve of First-Order Magnetic Phase Transition. J. Exp. Theor. Phys. 136, 300–304 (2023). https://doi.org/10.1134/S1063776123030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123030081

Navigation