Skip to main content
Log in

Thermally Induced Stark Shifts of Highly Excited States of Hydrogen Atom

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Thermally induced Stark shifts and line broadening of highly excited atomic hydrogen levels are investigated. Numerical calculations aimed at using the results in current and planned precision measurements of transition frequencies in the hydrogen atom are performed for ns/nd states (n is the principal quantum number). The results are obtained for the cryogenic temperature and a wide range of values including the room temperature. It is found that accurate numerical calculations of the thermal Stark effect for states with principal quantum number n ≥ 8 with account for the Lamb shift and the fine structure reveal considerable deviation from the values obtained earlier using approximate methods. The reported results can be used for analyzing the results of the modern precision experiments and for refining the fundamental constants (in particular, the Rydberg constant and the proton charge radius).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Y. Gnedin, A. Mihajlov, L. Ignjatović, N. Sakan, V. Srećković, M. Zakharov, N. Bezuglov, and A. Klycharev, New Astron. Rev. 53, 259 (2009).

    Article  ADS  Google Scholar 

  2. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. Lukin, Nature (London, U.K.) 551, 11 (2017).

    Article  Google Scholar 

  3. B. Zelener, B. Zelener, and E. Zelener, Energy 2 (2018).

  4. M. G. Kozlov, M. S. Safronova, J. R. Crespo López-Urrutia, and P. O. Schmidt, Rev. Mod. Phys. 90, 045005 (2018).

  5. T. L. Nicholson, S. L. Campbell, R. B. H. G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, Nat. Commun. 6, 263004 (2015).

  6. M. S. Safronova, D. Jiang, B. Arora, C. W. Clark, M. G. Kozlov, U. I. Safronova, and W. R. Johnson, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 94 (2010).

    Article  Google Scholar 

  7. M. S. Safronova et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 94 (2010).

    Article  Google Scholar 

  8. M. S. Safronova, M. G. Kozlov, and C. W. Clark, Phys. Rev. Lett. 107, 143006 (2011).

  9. W. M. Itano, L. L. Lewis, and D. J. Wineland, Phys. Rev. A 25, 1233 (1982).

    Article  ADS  Google Scholar 

  10. T. Middelmann, C. Lisdat, S. Falke, J. S. R. V. Winfred, F. Riehle, and U. Sterr, Instrum. Meas. IEEE Trans. 60, 2550 (2011).

    Article  ADS  Google Scholar 

  11. S. G. Porsev and A. Derevianko, Phys. Rev. A 74, 020502(R) (2006).

  12. D. Solovyev, L. Labzowsky, and G. Plunien, Phys. Rev. A 92, 022508 (2015).

  13. D. Solovyev, Ann. Phys. 415, 168128 (2020).

  14. D. Solovyev, T. Zalialiutdinov, A. Anikin, J. Triaskin, and L. Labzowsky, Phys. Rev. A 100, 012506 (2019).

  15. D. Solovyev, T. Zalialiutdinov, and A. Anikin, Phys. Rev. A 101, 052501 (2020).

  16. T. Zalialiutdinov, D. Solovyev, and L. Labzowsky, Phys. Rev. A 101, 052503 (2020).

  17. T. Zalialiutdinov, A. Anikin, and D. Solovyev, Phys. Rev. A 102, 032204 (2020).

  18. M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  19. F. Low, Phys. Rev. 88, 53 (1952).

    Article  ADS  Google Scholar 

  20. J. Sucher, Phys. Rev. 107, 1448 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Y. Andreev, L. N. Labzowsky, G. Plunien, and D. A. Solovyev, Phys. Rep. 455, 135 (2008).

    Article  ADS  Google Scholar 

  22. T. A. Zalialiutdinov, D. A. Solovyev, L. N. Labzowsky, and G. Plunien, Phys. Rep. 737, 1 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Beloy et al., Phys. Rev. Lett. 113, 260801 (2014).

  24. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Wiley-Interscience, New York, 1965).

    MATH  Google Scholar 

  25. L. Labzowsky, G. Klimchitskaya, and Y. Dmitriev, Relativistic Effects in Spectra of Atomic Systems (Inst. Phys., Bristol, Philadelphia, 1993).

    Google Scholar 

  26. J. F. Donoghue, B. R. Holstein, and R. W. Robinett, Ann. Phys. 164, 233 (1985).

    Article  ADS  Google Scholar 

  27. J. F. Donoghue and B. R. Holstein, Phys. Rev. D 28, 340 (1983).

    Article  ADS  Google Scholar 

  28. J. W. Farley and W. H. Wing, Phys. Rev. A 23, 2397 (1981).

    Article  ADS  Google Scholar 

  29. U. D. Jentschura and M. Haas, Phys. Rev. A 78, 042504 (2008).

  30. T. F. Gallagher and W. E. Cooke, Phys. Rev. Lett. 42, 835 (1979).

    Article  ADS  Google Scholar 

  31. C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien, F. Biraben, O. Acef, J.-J. Zondy, and A. Clairon, Phys. Rev. Lett. 82, 4960 (1999).

    Article  ADS  Google Scholar 

  32. B. Beauvoir, C. Schwob, O. Acef, L. Jozefowski, L. Hilico, F. Nez, L. Julien, A. Clairon, and F. Biraben, Eur. Phys. J. D 12, 61 (2000).

    Article  ADS  Google Scholar 

  33. W. Gordon, Ann. Phys. 394, 1031 (1929).

    Article  Google Scholar 

  34. J. Chluba and R. A. Sunyaev, Astron. Astrophys. 512, A53 (2010).

    Article  ADS  Google Scholar 

  35. N. Manakov, A. Maquet, S. Marmo, and C. Szymanowski, Phys. Lett. A 237, 234 (1998).

    Article  ADS  Google Scholar 

  36. V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and G. Soff, Phys. Rev. Lett. 93, 130405 (2004).

  37. C. Lai, Phys. Lett. A 83, 322 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  38. S. P. Alliluev and I. A. Malkin, Sov. Phys. JETP 39, 627 (1974).

    ADS  Google Scholar 

  39. A. Czarnecki, U. D. Jentschura, and K. Pachucki, Phys. Rev. Lett. 95, 180404 (2005).

  40. A. D. Brandt, S. F. Cooper, C. Rasor, Z. Burkley, A. Matveev, and D. C. Yost, Phys. Rev. Lett. 128, 023001 (2022).

Download references

Funding

This study was supported by grant no. MK-4796.2022.1.2 from the President of the Russian Federation and the Russian Foundation for Basic Research (project no. 20-02-00111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Zalialiutdinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalialiutdinov, T.A., Anikin, A.A. & Soloviev, D.A. Thermally Induced Stark Shifts of Highly Excited States of Hydrogen Atom. J. Exp. Theor. Phys. 135, 605–610 (2022). https://doi.org/10.1134/S1063776122110206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110206

Navigation