Skip to main content
Log in

Optical Bistability and Symmetry Breaking at Resonance Scattering of Light by a Finite Photonic Crystal with a Nonlinear Resonant Cavity

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Optical bistability and symmetry breaking under the conditions of plane wave incidence on a system of coupled photonic crystal microcavities containing an inclusion with Kerr susceptibility have been studied. The T-matrix modal method has been generalized for the case of nonlinear microcavities supporting one monopole mode. It has been shown that both phenomena considerably depend not only on external field strength but also on angle of incidence and photonic crystal size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. D. N. Neshev, A.A Sukhorukov, W. Krolikowski, Y. S. Kivshar, and S. Lan, J. Nonlin. Opt. Phys. Mater. 16, 1 (2007).

    Article  Google Scholar 

  2. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljačič, Opt. Express 15, 16161 (2007).

    Article  ADS  Google Scholar 

  3. A. R. McGurn and G. Birkok, Phys. Rev. E 69, 235105 (2004).

  4. A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).

  5. K. Frizyuk, J. Opt. Soc. Am. B 8, F32 (2019).

    Article  Google Scholar 

  6. A. R. McGurn, Phys. Rev. B 77, 115105 (2008).

  7. J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and M. Soljačič, J. Light. Technol. 25, 2539 (2007).

    Article  ADS  Google Scholar 

  8. M. Soljačič, E. Lidorikis, J. D. Joannopoulos, and L. V. Hau, Appl. Phys. Lett. 86, 171101 (2005).

  9. D. Vujic and S. John, Phys. Rev. A 72, 013807 (2005).

  10. E. Bulgakov, K. Pichugin, and A. Sadreev, J. Phys.: Condens. Matter 25, 395304 (2013).

  11. X.-S. Lin, W.-O. Wu, H. Zhou, K.-F. Zhou, and S. Lan, Opt. Express 14, 2429 (2006).

    Article  ADS  Google Scholar 

  12. S. F. Mingaleev and Y. S. Kivshar, J. Opt. Soc. Am. 19, 2241 (2002).

    Article  ADS  Google Scholar 

  13. S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, Phys. Rev. E 74, 046603 (2006).

  14. L. Yuan and Y. Y. Lu, SIAM J. Appl. Math. 80, 864 (2020).

    Article  MathSciNet  Google Scholar 

  15. M. Bahl, N. C. Panoiu, and I. V. Iorsh, Jr., Phys. Rev. E 67, 056604 (2003).

  16. A.Rodriguez, M. Soljačič, J. D. Joannopoulos, and S. G. Johnson, Opt. Express 15, 7303 (2007).

    Article  ADS  Google Scholar 

  17. J. Wang, M. Clementi, M. Minkov, A. Barone, J.‑F. Carlin, N. Grandjean, D. Gerace, S. Fan, M. Galli, and R. Houdr’e, Optica 7, 1126 (2020).

    Article  ADS  Google Scholar 

  18. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

    Google Scholar 

  19. F. Zhou, Y. Liu, Z-Y. Li, and Y. Xia, Opt. Express 18, 13337 (2010).

    Article  ADS  Google Scholar 

  20. Y. Liu, F. Qin, Y. Xia, F. Zhou, and Z.-Y. Lia, J. Appl. Phys. 106, 083102 (2009).

  21. E. N. Bulgakov and A. F. Sadreev, J. Opt. Soc. Am. B 29, 2924 (2012).

    Article  ADS  Google Scholar 

  22. M. M. Mazumder, S. C. Hill, D. Q. Chowdhury, and R. K. Chang, J. Opt. Soc. Am. B 12, 297 (1995).

    Article  ADS  Google Scholar 

  23. M. F. Yanik, S. Fan, and M. Soljačič, Appl. Phys. Lett. 83, 2739 (2003).

    Article  ADS  Google Scholar 

  24. E. N. Bulgakov, K. N. Pichugin, and A. F. Sadreev, Opt. Express 23, 20636 (2015).

    Article  Google Scholar 

  25. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding Flow of Light (Princeton Univ. Press, Princeton, 2008).

    MATH  Google Scholar 

  26. K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, Nanophotonics 8, 725 (2019).

    Article  Google Scholar 

  27. D. Dolinina and A. Yulin, Opt. Lett. 45, 3781 (2020).

    Article  ADS  Google Scholar 

  28. S. D. Krasikov, A. A. Bogdanov, and I. V. Iorsh, Phys. Rev. B 97, 224309 (2018).

  29. A. Chukhrov, S. Krasikov, A. Yulin, and A. A. Bogdanov, Phys. Rev. B 103, 214312 (2021).

  30. L. Yuan and Y. Y. Lu, Phys. Rev. A 94, 013852 (2016).

  31. L. Yuan and Y. Y. Lu, Phys. Rev. A 95, 023834 (2017).

  32. L. Yuan and Y. Y. Lu, Opt. Express 23, 20636 (2015).

    Article  ADS  Google Scholar 

  33. Q. Yang, Y. Liu, X. Gan, C. Fang, G. Han, and Y. Hao, IEEE Photon. J. 12, 4601209 (2020).

  34. E. N. Bulgakov and D. N. Maksimov, Sci. Rep. 9, 7153 (2019).

    Article  ADS  Google Scholar 

  35. D. N. Maksimov, A. A. Bogdanov, and E. N. Bulgakov, Phys. Rev. A 102, 033511 (2020).

  36. E. N. Bulgakov and A. F. Sadreev, Phys. Rev. A 99, 033851 (2019).

  37. T. Peschel, U. Peschel, and F. Lederer, Phys. Rev. A 50, 5153 (1994).

    Article  ADS  Google Scholar 

  38. L. Yuan, in Proceedings of the 2015 IEEE International Conference on Computational Electromagnetics (2015), p. 212.

  39. L. Yuan and Y. Y. Lu, Opt. Express 22, 30128 (2014).

    Article  ADS  Google Scholar 

  40. B. Maes, M. Soljačič, J. D. Joannopoulos, P. Bienstman, R. Baets, S.-P. Gorza, and M. Haelterman, Opt. Express 14, 10678 (2006).

    Article  ADS  Google Scholar 

  41. E. Bulgakov, A. Sadreev, and K. Pichugin, in Progress in Optical Science and Photonics (2013), p. 89.

    MATH  Google Scholar 

  42. E. N. Bulgakov and A. F. Sadreev, Phys. Rev. E 86, 075125 (2012).

  43. A. Mirzaei, A. E. Miroshnichenko, N. A. Zharova, and I. V. Shadrivov, J. Opt. Soc. Am. B 31, 1595 (2014).

    Article  ADS  Google Scholar 

  44. E. Bulgakov and A. Sadreev, J. Phys.: Condens. Matter 23, 315303 (2011).

  45. L. Yuan and Y. Y. Lu, Opt. Express 21, 11952 (2013).

    Article  ADS  Google Scholar 

  46. E. Centeno and D. Felbacq, Phys. Rev. B 62, 7683 (2000).

    Article  ADS  Google Scholar 

  47. T. Christopoulos, O. Tsilipakos, and E. E. Kriezis, Opt. Lett. 45, 6442 (2020).

    Article  ADS  Google Scholar 

  48. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, Opt. Express 20, 15945 (2012).

    Article  ADS  Google Scholar 

  49. K. Yasumoto, Electromagnetic Theory and Applications for Photonic Crystals (Taylor and Francis Group, London, 2006).

    Google Scholar 

  50. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Goddard Inst. Space Studies, 2004).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 22-12-00070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Shadrina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

APPENDIX

APPENDIX

The solution of the problem of plane wave scattering by a set of dielectric cylinders with permittivity ε will be described with the T-matrix model method [50].

We will follow the approach used in [49]. In this method, the electric field is expanded in cylindrical harmonics both inside and outside of the jth cylinder in a local coordinate system (see Fig. 14):

$$\begin{gathered} {{E}_{z}} = \sum\limits_{m = - \infty }^{ + \infty } {{{c}_{{jm}}}{{J}_{m}}(\sqrt \varepsilon {{k}_{0}}{{r}_{j}}){{e}^{{im{{\varphi }_{j}}}}},\quad {{r}_{j}} < {{R}_{j}},} \\ {{E}_{z}} = \sum\limits_{m = - \infty }^{ + \infty } {{{a}_{{jm}}}{{J}_{m}}({{k}_{0}}{{r}_{j}}){{e}^{{im{{\varphi }_{j}}}}}} \\ + \sum\limits_{m = - \infty }^{ + \infty } {{{b}_{{jm}}}H_{m}^{{(1)}}({{k}_{0}}{{r}_{j}}){{e}^{{im{{\varphi }_{j}}}}},\quad {{r}_{j}} > {{R}_{j}}.} \\ \end{gathered} $$
(4)
Fig. 14.
figure 14

Global (xy) and local (xj  yj, xl  yl) coordinate systems.

Here, k0 = ω/c, coefficients ajm are the harmonic amplitudes of the field incident on the jth cylinder, and bjm are the amplitudes of the scattered field. Amplitudes ajm are presented in the form

$${{a}_{{j,m}}} = a_{{j,m}}^{{{\text{inc}}}} + a_{{j,m}}^{{{\text{rods}}}},$$
(5)

where

$$a_{{j,m}}^{{{\text{inc}}}} = {{( - 1)}^{m}}{{e}^{{i{{k}_{0}}{{R}_{j}}\sin ({{\theta }_{{{\text{inc}}}}} - {{\theta }_{j}}) - im{{\theta }_{{{\text{inc}}}}}}}}$$
(6)

is the amplitude of the plane wave incident on the system and (Rj, θj) are the coordinates of the jth cylinder relative to the global coordinate system. Amplitudes \(a_{{j,m}}^{{{\text{rods}}}}\) represent the field scattered from the rest of cylinders (lj). Using the Graph formula, one can relate amplitudes \(a_{{j,m}}^{{{\text{rods}}}}\) to scatt1ered wave amplitudes bl,m (l ≠ j):

$$a_{{j,m}}^{{{\text{rods}}}} = \sum\limits_{q = - \infty }^{ + \infty } {\sum\limits_{l \ne j}^{} {{{b}_{{l,q}}}{{e}^{{i(m - q){{\theta }_{{j,i}}}}}}H_{{m - q}}^{{(1)}}(k{{r}_{{j,l}}}).} } $$
(7)

From (5)–(7), we obtain

$${{{\mathbf{a}}}_{j}} = {{{\mathbf{Q}}}_{j}} + \sum\limits_{l \ne j}^{} {{{{\hat {T}}}_{{j,l}}}{{{\mathbf{b}}}_{l}},} $$
(8)

where

$${{a}_{{j,m}}} = {{({{{\mathbf{a}}}_{j}})}_{m}},$$
(9)
$${{b}_{{j,m}}} = {{({{{\mathbf{b}}}_{j}})}_{m}},$$
(10)
$${{({{{\mathbf{Q}}}_{j}})}_{m}} = {{( - 1)}^{m}}{{e}^{{i{{k}_{0}}{{R}_{j}}\sin ({{\theta }_{{{\text{inc}}}}} - {{\theta }_{j}}) - im{{\theta }_{{{\text{inc}}}}}}}},$$
(11)
$${{({{\hat {T}}_{{j,l}}})}_{{m,q}}} = {{e}^{{i(q - m){{\theta }_{{j,l}}}}}}H_{{m - q}}^{{(1)}}({{k}_{0}}{{r}_{{j,l}}}).$$
(12)

To close system (8), we use coupling between amplitudes (bj) and (aj) through the diagonal t-matrix:

$${{{\mathbf{b}}}_{j}} = {{\hat {t}}_{j}}{{{\mathbf{a}}}_{j}},$$
(13)

where

$$\begin{gathered} {{{\hat {t}}}_{{m,m}}}\, = \, - (\sqrt \varepsilon {{k}_{0}}{{J}_{m}}({{k}_{0}}R)J_{m}^{'}({{k}_{0}}\sqrt \varepsilon R)\, - \,{{k}_{0}}{{J}_{m}}({{k}_{0}}\sqrt \varepsilon R)J_{m}^{'}({{k}_{0}}R)) \\ \times \,{{(\sqrt \varepsilon {{k}_{0}}H_{m}^{{(1)}}({{k}_{0}}R)J_{m}^{'}({{k}_{0}}\sqrt \varepsilon R)\, - \,{{k}_{0}}{{J}_{m}}({{k}_{0}}\sqrt \varepsilon R)H_{m}^{{(1)'}}({{k}_{0}}R))}^{{ - 1}}}. \\ \end{gathered} $$
(14)

Thus, we arrived at a set of linear equations for amplitudes bj:

$${{{\mathbf{b}}}_{j}} - \sum\limits_{l \ne j}^{} {{{{\hat {t}}}_{j}}{{{\hat {T}}}_{{j,l}}}{{{\mathbf{b}}}_{l}} = {{{\hat {t}}}_{j}}{{{\mathbf{Q}}}_{j}}.} $$
(15)

If the permittivity of the cylinders contains a Kerr nonlinear correction, ε = ε0 + λ|Ez(r)|2, formula (15) remains valid if coupling between amplitudes \({\mathbf{b}}_{j}^{{({\text{nonlin}})}}\) and \({\mathbf{a}}_{j}^{{({\text{nonlin}})}}\) through the nonlinear t-matrix is known:

$${\mathbf{b}}_{j}^{{({\text{nonlin}})}} = \hat {t}_{j}^{{({\text{nonlin}})}}{\mathbf{a}}_{j}^{{({\text{nonlin}})}}.$$
(16)

The existence of such coupling in the form of formula (6) is not obvious. Below, an explicit expression for \(\hat {t}_{j}^{{({\text{nonlin}})}}\) will be derived under two conditions: (i) nonlinear cylinders are placed only in resonant cavities and (ii) a monopole mode is excited in each cavity in the case of light resonance scattering, when nonlinearity becomes a critical factor; that is, s-scattering by nonlinear cylinders dominates.

The equation for the Ez component of the field at the nonlinear cylinder in the cylindrical coordinate system has the form

$$\begin{gathered} \left[ {\frac{{{{\partial }^{2}}}}{{\partial {{r}^{2}}}} + \frac{1}{r}\frac{\partial }{{\partial r}} + \frac{1}{{{{r}^{2}}}}\frac{{{{\partial }^{2}}}}{{\partial {{\varphi }^{2}}}}} \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}}\, + k_{0}^{2}({{\varepsilon }_{0}} + \lambda {\text{|}}{{E}_{z}}(r,\varphi ){{{\text{|}}}^{2}})} \right]{{E}_{z}}(r,\varphi ) = 0. \\ \end{gathered} $$
(17)

As before, the wave function is sought in the form of a series:

$${{E}_{z}}(r,\varphi ) = \sum\limits_{m \in Z}^{} {{{\psi }_{m}}(r){{e}^{{im\varphi }}}.} $$
(18)

After (18) is substituted into (17), the latter can approximately be represented as a set of uncoupled equations:

$$\psi _{m}^{{''}} + \frac{1}{r}\psi _{m}^{'} + k_{0}^{2}\left( {{{\varepsilon }_{0}} - \frac{{{{m}^{2}}}}{{{{r}^{2}}}}} \right){{\psi }_{m}} = 0,\quad m \ne 0,$$
(19a)
$$\psi _{0}^{{''}} + \frac{1}{r}\psi _{0}^{'} + k_{0}^{2}({{\varepsilon }_{0}} + \lambda {\text{|}}{{\psi }_{0}}{{{\text{|}}}^{2}}){{\psi }_{m}} = 0,\quad m = 0.$$
(19b)

The nonlinear term should be taken into account only in the equation for ψ0, since |ψm| ≪ |ψ0| at resonance s-scattering. In the absence of resonance, the nonlinearity term can be ignored. Thus, the solution of the problem reduces to the solution of Eq. (19b). This equation can be solved approximately using the perturbation theory with the consideration of the fact that λ|ψ0|2 ≪ ε0 even at resonance scattering.

To this end, let us cast an auxiliary boundary-value problem:

$$\psi (r'') + \frac{1}{r}\psi (r)'\, + k_{0}^{2}({{\varepsilon }_{0}} + \lambda {\text{|}}\psi (r{\text{)}}{{{\text{|}}}^{2}})\psi (r) = 0,$$
(20)

with

$$\psi (r = 0) < \infty ,\quad \psi (r = R) = A.$$

In what follows, we put ψ ≡ ψ0. The problem can be solved using Green’s function g(r):

$$rg{\kern 1pt} ''(r) + g{\kern 1pt} '\, + \left( {k_{0}^{2}r - \frac{{{{m}^{2}}}}{r}} \right)g(r) = - \delta (r - \rho ),$$
(21)

with

$$\begin{gathered} g(r = 0) < \infty , \\ g(r = R) = 0. \\ \end{gathered} $$

Equation (21) has an explicit solution:

$$\begin{gathered} g(r,\rho ) = \frac{{\pi {{J}_{m}}({{k}_{0}}{{r}_{ < }})}}{{2{{J}_{m}}({{k}_{0}}R)}}({{J}_{m}}({{k}_{0}}{{r}_{ < }}){{Y}_{m}}({{k}_{0}}R) \\ \, - {{J}_{m}}({{k}_{0}}R){{Y}_{m}}({{k}_{0}}{{r}_{ > }})), \\ \end{gathered} $$
(22)

where r> = max(r, ρ) and r< = min(r, ρ). Then, Eq. (20) has the formal solution

$$\begin{gathered} \tilde {\psi }(r) = \int\limits_0^R {g(r,\rho )[k_{0}^{2}{{\varepsilon }_{0}}\rho A + \lambda k_{0}^{2}\rho {\text{|}}\psi {{{\text{|}}}^{2}}\psi ]d\rho ,} \\ \tilde {\psi }(r) = \psi - A. \\ \end{gathered} $$
(23)

It is easy to check that

$$A\int\limits_0^R {g(r,\rho )k_{0}^{2}\rho d\rho = A\frac{{{{J}_{0}}(kr)}}{{{{J}_{0}}(kR)}} - A,} $$
(24)

where

$$k = \sqrt {{{\varepsilon }_{0}}} {{k}_{0}}.$$

Then, at λ = 0, we have

$$\tilde {\psi }(r) = A\left( {\frac{{{{J}_{0}}(kr)}}{{{{J}_{0}}(kR)}} - 1} \right).$$
(25)

Now, integral equation (23) can be written as

$$\psi (r) = \psi {{(r)}_{g}} + \lambda k_{0}^{2}\int\limits_0^R {\rho {\text{|}}\psi (\rho {\text{)}}{{{\text{|}}}^{2}}\psi (\rho )g(r,\rho )d\rho ,} $$
(26)

where

$$\psi {{(r)}_{g}} = A\frac{{{{J}_{0}}(kr)}}{{{{J}_{0}}(kR)}}.$$

In the limit λ → 0, Eq. (26) can be approximately solved by iteration. In the first Born approximation, we have

$$\begin{gathered} \psi (r) \approx \psi {{(r)}_{g}} + \lambda k_{0}^{2}\int\limits_0^R {\rho {\text{|}}{{\psi }_{g}}(\rho ){{{\text{|}}}^{2}}{{\psi }_{g}}(\rho )g(r,\rho )d\rho } \\ = \psi {{(r)}_{g}} + {{\psi }_{{{\text{corr}}}}}(r). \\ \end{gathered} $$
(27)

Correction term ψcorr(r) can be reduced to the form

$$\begin{gathered} {{\psi }_{{{\text{corr}}}}}(r) = \lambda k_{0}^{2}\int\limits_0^R {\rho {\text{|}}{{\psi }_{g}}{{{\text{|}}}^{2}}{{\psi }_{g}}g(r,\rho )d\rho } \\ = \frac{{\pi \gamma }}{{2{{k}^{2}}}}{{J}_{0}}(kr)\left[ {\frac{{{{Y}_{0}}(kr)}}{{{{J}_{0}}(kR)}}\int\limits_0^{kR} {xJ_{0}^{4}(x)dx} } \right. \\ \left. {\, - \int\limits_0^R {x{{Y}_{0}}(x)J_{0}^{3}(x)dx} } \right] - \lambda k_{0}^{2}{{Y}_{0}}(kr)\int\limits_0^{kr} {xJ_{0}^{4}(x)dx} \\ \, + \lambda k_{0}^{2}{{J}_{0}}(kr)\int\limits_0^{kr} {x{{Y}_{0}}(x)J_{0}^{3}(x)dx,} \\ \end{gathered} $$
(28)

where

$$\gamma = \frac{{\lambda k_{0}^{2}{\text{|}}A{\text{|}}A}}{{J_{0}^{3}(kR)}}.$$

Note that ψcorr(r = R) = 0. To sew together solution (27) inside the cylinder and the external solution, it is necessary to know \(\psi _{{{\text{corr}}}}^{'}\)(r = R). This derivative is found from Eq. (28):

$$\psi _{{{\text{corr}}}}^{'}(r = R) = - \frac{\lambda }{{{{\varepsilon }_{0}}}}\frac{{{\text{|}}A{{{\text{|}}}^{2}}A}}{{RJ_{0}^{4}(kR)}}\int\limits_0^{kR} {xJ_{0}^{4}(x)dx.} $$
(29)

Then, the approximate solution inside the cylinder takes the form

$$\psi (r) = {{\psi }_{g}}(r) + {{\psi }_{{{\text{corr}}}}}(r),$$
$$\psi (r = R) = A,$$
$$\psi '(r = R) = k\frac{{J_{0}^{'}(kR)}}{{{{J}_{0}}(kR)}}A - \varkappa {\text{|}}A{{{\text{|}}}^{2}}A,$$
(30)

where

$$\varkappa = \frac{\lambda }{{{{\varepsilon }_{0}}}}\frac{1}{{RJ_{0}^{4}(kR)}}\int\limits_0^{kR} {xJ_{0}^{4}(x)dx.} $$

Now we sew together the internal solution and external solution

$$\psi (r) = {{a}_{0}}{{J}_{0}}({{k}_{0}}r) + {{b}_{0}}H_{0}^{{(1)}}({{k}_{0}}r),$$

to obtain

$${{b}_{0}} = {{t}_{0}}{{a}_{0}} - \frac{{\varkappa {\text{|}}A{{{\text{|}}}^{2}}A}}{{{{k}_{0}}H_{0}^{{(1)'}}({{k}_{0}}R) - k\frac{{J_{0}^{'}(kR)}}{{{{J}_{0}}(kR)}}H_{0}^{{(1)}}({{k}_{0}}R)}},$$
(31)

where t0 is the element of diagonal t-matrix (14) at resonance scattering.

To eliminate parameter A from expression (31), one can take its value from the linear problem (λ = 0):

$$A \approx {{b}_{0}}\left[ {\frac{{{{J}_{0}}({{k}_{0}}R)}}{{{{t}_{0}}}} + H_{0}^{{(1)}}({{k}_{0}}R)} \right] + O(\Lambda ).$$
(32)

Then,

$${{t}_{0}}{{a}_{0}} \approx {{b}_{0}}\left( {1 + \Lambda {\kern 1pt} |{\kern 1pt} {{b}_{0}}{\kern 1pt} {{|}^{2}}} \right),$$
(33)

where

$$\Lambda = \frac{{\varkappa {{{\left| {\frac{{{{J}_{0}}({{k}_{0}}R)}}{{{{t}_{0}}}} + H_{0}^{{(1)}}({{k}_{0}}R)} \right|}}^{2}}\left( {\frac{{{{J}_{0}}({{k}_{0}}R)}}{{{{t}_{0}}}} + H_{0}^{{(1)}}({{k}_{0}}R)} \right)}}{{{{k}_{0}}H_{0}^{{(1)'}}({{k}_{0}}R) - k\frac{{J_{0}^{'}(kR)}}{{{{J}_{0}}(kR)}}H_{0}^{{(1)}}({{k}_{0}}R)}}.$$

Thus, formula (33) sets necessary coupling between amplitudes a0 and b0. As a result, formula (15) in the nonlinear case takes the form

$$\left( {1 + \Lambda \sum\limits_{k \in {{N}_{k}}}^{} {{\text{|}}{{b}_{{k0}}}{{{\text{|}}}^{2}}{{{\hat {P}}}_{k}}} } \right){{{\mathbf{b}}}_{j}} - \sum\limits_{l \ne j}^{} {{{{\hat {t}}}_{j}}{{{\hat {T}}}_{{jl}}}{{{\mathbf{b}}}_{l}} = {{{\hat {t}}}_{j}}{{{\mathbf{Q}}}_{j}},} $$
(34)

where

$${{({{\hat {P}}_{k}}{{b}_{j}})}_{m}} = {{\delta }_{{jk}}}{{\delta }_{{0m}}}{{b}_{{j0}}},$$

and Nk is a set of nonlinear cylinders. In essence, Eq. (34) represents a closed set of equations for amplitudes bj. In computer calculations, azimuthal number m takes a finite series of values: m ∈ [–M, –M + 1, …, +M].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrina, G.V., Bulgakov, E.N. Optical Bistability and Symmetry Breaking at Resonance Scattering of Light by a Finite Photonic Crystal with a Nonlinear Resonant Cavity. J. Exp. Theor. Phys. 135, 632–641 (2022). https://doi.org/10.1134/S1063776122110176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110176

Navigation