Skip to main content
Log in

Asymptotic Theory of Classical Impurity Transport in Inhomogeneous Media. Fermat’s Principle

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An asymptotic theory of impurity transport based on advection–diffusion in media with large-scale inhomogeneities is developed. The expression for the concentration is reduced to one-dimensional integrals along the characteristic line called the trajectory of the concentration signal. The trajectory itself is determined from the variational principle—an analog of Fermat’s principle in geometrical optics—which leads to a first-order ordinary differential equation for the unit tangent vector to the trajectory. The asymptotic theory is applicable at distances from the impurity source much larger than the size of the main distribution region of the impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. B. Isichenko, Rev. Mod. Phys. 29, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  3. L. A. Bol’shov, P. S. Kondratenko, and L. V. Matveev, Phys. Usp. 62, 649 (2019).

    Article  ADS  Google Scholar 

  4. P. S. Kondratenko, JETP Lett. 106, 604 (2017).

    Article  ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon, New York, 1984; Fizmatlit, Moscow, 2005).

  6. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, New York, 1977; Fizmatlit, Moscow, 2004).

  7. A. M. Dykhne, I. L. Dranikov, P. S. Kondratenko, and L. V. Matveev, Phys. Rev. E 72, 061104 (2005).

  8. P. S. Kondratenko and L. V. Matveev, Phys. Rev. E 75, 051102 (2007).

  9. P. S. Kondratenko and A. L. Matveev, J. Exp. Theor. Phys. 130, 591 (2020).

    Article  ADS  Google Scholar 

  10. P. S. Kondratenko, A. L. Matveev, and Yu. N. Obukhov, J. Exp. Theor. Phys. 132, 628 (2021).

    Article  ADS  Google Scholar 

  11. P. S. Kondratenko and A. L. Matveev, J. Exp. Theor. Phys. 132, 632 (2021).

    Article  ADS  Google Scholar 

  12. P. S. Kondratenko, A. L. Matveev, and A. D. Vasiliev, Eur. Phys. J. B 94, 50 (2021).

    Article  ADS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Pergamon, New York, 1988; Fizmatlit, Moscow, 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Kondratenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Nikitin

APPENDIX

APPENDIX

The purpose of this section is to find, in the Laplace representation, the impurity concentration cp(r) satisfying Eq. (1) with the initial condition (3) for coordinate-independent diffusivity and advection velocity:

$$D({\mathbf{r}}) = D(0),\quad {\mathbf{u}}({\mathbf{r}}) = {\mathbf{u}}(0).$$
(A.1)

The additional transition to the Fourier representation

$${{c}_{{p{\mathbf{k}}}}} = \int {{{d}^{3}}r{{c}_{p}}({\mathbf{r}}){{e}^{{ - i({\mathbf{kr}})}}}} $$

reduces the problem to an algebraic one, whose solution is given by the expression

$${{c}_{{p{\mathbf{k}}}}} = \frac{N}{{p + i({\mathbf{u}}(0){\mathbf{k}}) + D(0){{k}^{2}}}}.$$
(A.2)

Applying the inverse Fourier transformation to this expression gives

$${{c}_{p}}({\mathbf{r}}) = \int {\frac{{{{d}^{3}}k}}{{{{{(2\pi )}}^{3}}}}\frac{N}{{p + i({\mathbf{u}}(0){\mathbf{k}}) + D(0){{k}^{2}}}}{{e}^{{i({\mathbf{kr}})}}},} $$
(A.3)

hence, after passing to the new integration variable k′ = k + iu(0)/2D(0), we obtain

$$\begin{gathered} {{c}_{p}}({\mathbf{r}}) = \int {\frac{{{{d}^{3}}k{\kern 1pt} '}}{{{{{(2\pi )}}^{3}}}}} \frac{N}{{p + {{{\left( {\frac{{{\mathbf{u}}(0)}}{{2D(0)}}} \right)}}^{2}} + D(0)k{{'}^{2}}}} \\ \times \exp \left[ {\frac{{({\mathbf{u}}(0){\mathbf{r}})}}{{2D(0)}} + i({\mathbf{k}}{\kern 1pt} '{\kern 1pt} {\mathbf{r}})} \right]. \\ \end{gathered} $$
(A.4)

Integrating first with respect to the angular coordinates of the vector k and then, using the residue theory, with respect to the absolute value of this vector, we obtain

$$\begin{gathered} {{c}_{p}}({\mathbf{r}}) \\ = \,\frac{N}{{4\pi D(0)r}}{\text{exp}}\left[ {\frac{{({\mathbf{u}}(0){\mathbf{r}})}}{{2D(0)}}\, - \,r\sqrt {{{{\left( {\frac{{{\mathbf{u}}(0)}}{{2D(0)}}} \right)}}^{2}}\, + \,\frac{p}{{D(0)}}} } \right]. \\ \end{gathered} $$
(A.5)

Hence we find the preexponential factor in the expression for concentration under condition (A.1):

$${{A}_{p}}({\mathbf{r}}) = \frac{N}{{4\pi D(0)r}}.$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratenko, P.S., Mukharyapova, A.V. Asymptotic Theory of Classical Impurity Transport in Inhomogeneous Media. Fermat’s Principle. J. Exp. Theor. Phys. 135, 714–719 (2022). https://doi.org/10.1134/S1063776122110103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110103

Navigation