Skip to main content
Log in

Structural and Magnetic Phase Transitions in the Multiferroic HoFe3(BO3)4 Observed by Mössbauer Spectroscopy and X-ray Diffraction

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature dependences of the structural parameters in a HoFe3(BO3)4 single crystal, studied by X-ray diffraction below and above the structural phase transition at TS = 365 K, correlate well with behavior of the Mössbauer parameter quadrupole interaction. However, two structural positions Fe1 and Fe2 of iron ions formed in the phase with space group P3121, which appears at temperatures below TS, cannot be distinguished by Mössbauer spectroscopy at 57Fe nuclei. This becomes possible only below the Néel temperature TN. It has been established that below TN, iron ions form a 3D magnetic order of the Ising type with critical parameters β = 0.283(1) and the dimension of the order parameter n = 1. The refined value of the Néel temperature is TN = 37.42(1) K. The dynamics of changes in the Mössbauer parameters of the quadrupole shift and the magnetic hyperfine field Bhf, observed near the temperature T = 4.4 K for iron ions in the Fe1 and Fe2 positions, indicates a reorientation of the magnetic moments of iron. This correlates with the spin-reorientation transition of Fe and Ho ions, previously observed by neutron diffraction in HoFe3(BO3)4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. G. A. Smolenskii, I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982).

    Article  ADS  Google Scholar 

  2. H. Schmid, Ferroelectrics 162, 317 (1994).

    Article  ADS  Google Scholar 

  3. D. I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).

    Article  ADS  Google Scholar 

  4. D. Khomskii, Physics 2, 20 (2009).

    Article  Google Scholar 

  5. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

  6. Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014).

  7. S. Dong, J. M. Liu, S. W. Cheong, et al., Adv. Phys. 64, 519 (2015).

    Article  ADS  Google Scholar 

  8. M. Fiebig, T. Lottermoser, D. Meier, et al., Nat. Rev. Mater. 1, 16046 (2016).

    Article  ADS  Google Scholar 

  9. S. Luo and K. Wang, J. Alloys Compd. 726, 833 (2017).

    Article  Google Scholar 

  10. A. Scaramucci, H. Shinaoka, M. V. Mostovoy, et al., Phys. Rev. X 8, 011005 (2018).

  11. A. M. Kadomtseva, Yu. F. Popov, G. P. Vorob’ev, et al., Low Temp. Phys. 36, 511 (2010).

    Article  ADS  Google Scholar 

  12. R. P. Chaudhury, F. Yen, B. Lorenz, et al., Phys. Rev. B 80, 104424 (2009).

  13. A. K. Zvezdin, S. S. Krotov, A. M. Kadomtseva, et al., JETP Lett. 81, 272 (2005).

    Article  ADS  Google Scholar 

  14. A. K. Zvezdin, G. P. Vorob’ev, A. M. Kadomtseva, et al., JETP Lett. 83, 509 (2006).

    Article  ADS  Google Scholar 

  15. J. E. Hamann-Borrero, S. Partzsch, S. Valencia, et al., Phys. Rev. Lett. 109, 267202 (2012).

  16. Yu. F. Popov, A. P. Pyatakov, A. M. Kadomtseva, et al., J. Exp. Theor. Phys. 111, 199 (2010).

    Article  ADS  Google Scholar 

  17. A. D. Balaev, L. N. Bezmaternykh, I. A. Gudim, et al., J. Magn. Magn. Mater. 258–259, 532 (2003).

    Article  ADS  Google Scholar 

  18. R. Z. Levitin, E. A. Popova, R. M. Chtsherbov, et al., JETP Lett. 79, 423 (2004).

    Article  ADS  Google Scholar 

  19. A. I. Pankrats, G. A. Petrakovskii, L. N. Bezmaternykh, et al., J. Exp. Theor. Phys. 99, 766 (2004).

    Article  ADS  Google Scholar 

  20. C. Ritter, A. Vorotynov, A. Pankrats, et al., J. Phys.: Condens. Matter 20, 365209 (2008).

  21. A. Pankrats, G. Petrakovskii, A. Kartashev, et al., J. Phys.: Condens. Matter 21, 436001 (2009).

  22. H. Mo, C. S. Nelson, L. N. Bezmaternykh, et al., Phys. Rev. B 78, 214407 (2008).

  23. M. Janoschek, P. Fischer, J. Schefer, et al., Phys. Rev. B 81, 094429 (2010).

  24. S. Hayashida, M. Soda, S. Itoh, et al., Phys. Rev. B 92, 054402 (2015).

  25. A. A. Demidov and D. V. Volkov, Phys. Solid State 53, 985 (2011).

    Article  ADS  Google Scholar 

  26. D. K. Shukla, S. Francoual, A. Skaugen, et al., Phys. Rev. B 86, 224421 (2012).

  27. A. M. Kadomtseva, G. P. Vorob’ev, Yu. F. Popov, et al., J. Exp. Theor. Phys. 114, 810 (2012).

    Article  ADS  Google Scholar 

  28. D. A. Erofeev, E. P. Chukalina, L. N. Bezmaternykh, et al., Opt. Spectrosc. 120, 558 (2016).

    Article  ADS  Google Scholar 

  29. L. S. Kolodyazhnaya, G. A. Zvyagina, I. V. Bilych, et al., Low Temp. Phys. 44, 1341 (2018).

    Article  ADS  Google Scholar 

  30. M. N. Popova, E. P. Chukalina, D. A. Erofeev, et al., Phys. Rev. B 103, 094411 (2021).

  31. A. I. Popov, D. I. Plokhov, and A. K. Zvezdin, Phys. Rev. B 87, 024413 (2013).

  32. T. Kurumaji, K. Ohgushi, and Y. Tokura, Phys. Rev. B 89, 195126 (2014).

  33. I. A. Gudim, E. V. Eremin, and V. L. Temerov, J. Cryst. Growth 312, 2427 (2010).

    Article  ADS  Google Scholar 

  34. I. A. Gudim, E. V. Eremin, M. S. Molokeev, Solid State Phenom. 215, 364 (2014).

    Article  Google Scholar 

  35. E. S. Smirnova, O. A. Alekseeva, A. P. Dudka, et al., Acta Crystallogr., B 75, 954 (2019).

    Article  Google Scholar 

  36. https://ritverc.com/en/products/sources-scientific-application/mossbauer-sources/57co

  37. K. Lagarec and D. G. Rancourt, Recoil – Mössbauer Spectral Analysis Software for Windows, vers. 1.0 (Dep. Phys., Univ. Ottawa, Ottawa, ON, Canada, 1998). https://denisrancourt.ca/Recoil-Manual.pdf.

    Google Scholar 

  38. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  39. C. R. dela Cruz, F. Yen, B. Lorenz, et al., Phys. Rev. B 71, 060407(R) (2005).

  40. C. R. dela Cruz, F. Yen, B. Lorenz, et al., Phys. Rev. B 73, 100406(R) (2006).

  41. D. Fausti, A. A. Nugroho, P. H. M. van Loosdrecht, et al., Phys. Rev. B 74, 024403 (2006).

  42. D. V. Volkov, A. A. Demidov, N. P. Kolmakova, et al., Phys. Solid State 50, 1677 (2008).

    Article  ADS  Google Scholar 

  43. K. V. Frolov, I. S. Lyubutin, E. S. Smirnova, et al., J. Alloys Compd. 671, 545 (2016).

    Article  Google Scholar 

  44. E. S. Smirnova, O. A. Alekseeva, A. P. Dudka, et al., Acta Crystallogr., B 74, 226 (2018).

    Article  Google Scholar 

  45. K. V. Frolov, I. S. Lyubutin, O. A. Alekseeva, et al., J. Alloys Compd. 748, 989 (2018).

    Article  Google Scholar 

  46. E. S. Smirnova, O. A. Alekseeva, A. P. Dudka, et al., Acta Crystallogr., B 78, 1 (2022).

    Article  Google Scholar 

  47. K. V. Frolov, I. S. Lyubutin, O. A. Alekseeva, et al., J. Alloys Compd. 909, 164747 (2022).

  48. D. Stoiber and R. Niewa, Z. Kristallogr. 234, 201 (2019).

    Article  Google Scholar 

  49. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon, Oxford, 1971), p. 42.

    Google Scholar 

  50. J.-P. Renard, in Organic and Inorganic Low-Dimensional Crystalline Materials, Ed. by P. Delhaes and M. Drillon (Plenum, New York, 1987), p. 125.

    Google Scholar 

  51. L. J. de Jongh, in Magnetic Properties of Layered Transition Metal Compounds, Ed. by L. J. de Jongh (Kluwer Academic, Netherlands, 1990), p. 1.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS and performed using the equipment of the Shared Research Center “Structural diagnostics of materials” of FSRC “Crystallography and Photonics” RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Frolov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, K.V., Alekseeva, O.A., Lyubutin, I.S. et al. Structural and Magnetic Phase Transitions in the Multiferroic HoFe3(BO3)4 Observed by Mössbauer Spectroscopy and X-ray Diffraction. J. Exp. Theor. Phys. 135, 698–707 (2022). https://doi.org/10.1134/S1063776122110036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110036

Navigation